Regularization Effect of Dropout

Xunyi Zhao
Supervisor: David Tax
Regularization

Overfitting: when the model is too flexible, its training performance can be much better than the test performance
Regularization

Overfitting: when the model is too flexible, its training performance can be much better than the test performance

Figure: Fitting the same dataset with different functions
Dropout

Deep neural networks are flexible, need regularizers to prevent overfitting.
Dropout

Deep neural networks are flexible, need regularizers to prevent overfitting.

Dropout: randomly replace the outputs of some neurons as 0’s during training.

Dropout

How does the dataset size affect dropout’s performance?

Behaviors

Binary classification task, each class from a 10-d Gaussian distribution.
Generalization gap = Training accuracy - Test accuracy.

Figure: Left: (10-10-10-2) networks. Right: (10-100-100-2) networks
Behaviors

- Dropout doesn’t work when the training set is too small or too large.
- Large networks need more training samples to make dropout work.
Behaviors

- Dropout doesn’t work when the training set is too small or too large.
- Large networks need more training samples to make dropout work.
Complexity

Number of parameters, norm of weights, etc.
Complexity

Number of parameters, norm of weights, etc.

- **Model class**
 - e.g. Rademacher complexity

- **Specific model**
 - e.g. Norm of weights
Complexity

Number of parameters, norm of weights, etc.

- **Model class**
 - e.g. Rademacher complexity

- **Specific model**
 - e.g. Norm of weights

Effect of dataset sizes \rightarrow complexity of specific models
Complexity

Complexity measures for specific models:

- **Norm**: Frobenius norm of weights.
- **Sharpness**: Second-order derivative of loss with respect to weights.
- **Sensitivity**: Derivative of prediction with respect to the input data.
Complexity

Norm: $\sum_i \| \theta^{(i)} \|_F$, where $\| \cdot \|_F$ is the Frobenius norm.
Complexity

Sharpness: $\sum_i \sqrt{\|\theta^{(i)}\|_F^2} H^{(i)}$, where $H^{(i)} := \sum_{i,j} \frac{\partial^2 \mathcal{L}(f_{\Theta}(X), Y)}{\partial \theta^{(i)}_{i,j} \partial \theta^{(i)}_{i,j}}$ [2]
Complexity

Sensitivity: $E_X [\| J(X) \|_F]$, where $J(X) = \frac{\partial f_\Theta(X)}{\partial X^T}[1]$
Complexity

- Complexity is low when the dataset size is very small \textbf{and} very large.
- Large networks find maximum with larger datasets.
- \textbf{Dropout works when the model’s complexity is high.}
Complexity

- Complexity is low when the dataset size is very small and very large.
- Large networks find maximum with larger datasets.
- Dropout works when the model’s complexity is high.
Classification Boundary

Predict score over the input space:

Figure: Prediction probability surface of the networks trained on the 2-d Gaussian dataset. Each axis represents one input feature range from \([-3,3]\).
Classification Boundary

Predict score over the input space:

Figure: Prediction probability surface of the networks trained on the 2-d Gaussian dataset. Each axis represents one input feature range from [-3,3].
Classification Boundary

Predict score over the input space:

Figure: Prediction probability surface of the networks trained on the 2-d Gaussian dataset. Each axis represents one input feature range from [-3,3].
Classification Boundary

- When the dataset is small, overfitting the samples does not require a complex boundary.
- Only when the dataset size is reasonably large, the model can be very complex to fit all the samples.
- When there are too many samples, a simple boundary would again be the best choice.
Classification Boundary

- When the dataset is small, overfitting the samples does not require a complex boundary.
- Only when the dataset size is reasonably large, the model can be very complex to fit all the samples.
- When there are too many samples, a simple boundary would again be the best choice.
Neuron Loss

Assumption: neurons have to work together to create a complicated boundary.

Figure: Prediction probability surface of the networks trained on the 2-d Gaussian dataset. Each axis represents one input feature range from [-3,3].
Neuron Loss

Train without dropout, test with dropout.

Figure: Test accuracy vs. dataset sizes. Dropout is only applied in the test phase.
Neuron Loss

- When neurons work together to create a complex boundary, it is vulnerable to neuron loss.
- If a model is not sensitive to neuron loss, applying dropout would not make a difference.
Neuron Loss

- When neurons work together to create a complex boundary, it is vulnerable to neuron loss.
- If a model is not sensitive to neuron loss, applying dropout would not make a difference.
Conclusion

- Dropout doesn’t work when the training set is too small or too large.
- Large networks need more training samples to make dropout work.
Conclusion

- Dropout doesn’t work when the training set is too small or too large.
- Large networks need more training samples to make dropout work.
- The model’s complexity is high when the dataset is reasonably large.
- Dropout works when the model’s complexity is high.
Conclusion

- Dropout doesn’t work when the training set is too small or too large.
- Large networks need more training samples to make dropout work.
- The model’s complexity is high when the dataset is reasonably large.
- Dropout works when the model’s complexity is high.