Regularization Effect of Dropout

Xunyi Zhao
Supervisor: David Tax

TU Delft &y



Regularization

Overfitting: when the model is too flexible, its training performance can be much better
than the test performance
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Regularization

Overfitting: when the model is too flexible, its training performance can be much better
than the test performance

Figure: Fitting the same dataset with different functions
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Dropout

Deep neural networks are flexible, need regularizers to prevent overfitting.
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Dropout

Deep neural networks are flexible, need regularizers to prevent overfitting.

Dropout: randomly replace the outputs of some neurons as 0's during training.

(a) Standard Neural Net (b) After applying dropout.

Figure: Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural
networks from overfitting. 2014
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Dropout

How does the dataset size affect dropout’s performance?
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Figure: Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural
networks from overfitting. 2014.
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Behaviors

Binary classification task, each class from a 10-d Gaussian distribution.
Generalization gap = Training accuracy - Test accuracy.
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Figure: Left: (10-10-10-2) networks. Right: (10-100-100-2) networks
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Behaviors

m Dropout doesn’t work when the training set is too small or too large.

m Large networks need more training samples to make dropout work.
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Behaviors
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Complexity

Number of parameters, norm of weights, etc.
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Complexity

Number of parameters, norm of weights, etc.

= Model class
m e.g. Rademacher complexity

= Specific model
m e.g. Norm of weights
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Complexity

Number of parameters, norm of weights, etc.

= Model class
m e.g. Rademacher complexity

= Specific model
m e.g. Norm of weights

Effect of dataset sizes — complexity of specific models
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Complexity
Complexity measures for specific models:
m Norm: Frobenius norm of weights.
m Sharpness: Second-order derivative of loss with respect to weights.

m Sensitivity: Derivative of prediction with respect to the input data.
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Complexity

Norm: >, HQ(’)HF, where ||-|| is the Frobenius norm.
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Complexity

Sharpness: ), \/||0(/)H% HO, where H() = i 6’25(’%()0 Y)[ 2]
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Complexity

Sensitivity: Ex [[|J (X)|z], where J(X) = 9fo(X)/0XT[1]
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Complexity

m Complexity is low when the dataset size is very small and very large.
m Large networks find maximum with larger datasets.

m Dropout works when the model’s complexity is high.
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Complexity

m Complexity is low when the dataset size is very small and very large.
m Large networks find maximum with larger datasets.

m Dropout works when the model’s complexity is high.

Dataset,_..___._............. Model's ____._.._._._._.._..._ Dropout's
Size

........................................

" Complexity - Performance

X.Zhao-10@student.tudelft.nl Regularization Effect of Dropout 6th October 2021 11 /20



Classification Boundary

Predict score over the input space:

10 samples, without dropout 10 samples, with dropout
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Figure: Prediction probability surface of the networks trained on the 2-d Gaussian dataset. Each
axis represents one input feature range from [-3,3].
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Classification Boundary

Predict score over the input space:

100 samples, without dropout 100 samples, with dropout
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Figure: Prediction probability surface of the networks trained on the 2-d Gaussian dataset. Each
axis represents one input feature range from [-3,3].
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Classification Boundary

Predict score over the input space:
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Figure: Prediction probability surface of the networks trained on the 2-d Gaussian dataset. Each
axis represents one input feature range from [-3,3].
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Classification Boundary

m When the dataset is small, overfitting the samples does not require a complex
boundary.

m Only when the dataset size is reasonably large, the model can be very complex to
fit all the samples.

m When there are too many samples, a simple boundary would again be the best
choice.
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Classification Boundary

m When the dataset is small, overfitting the samples does not require a complex
boundary.

m Only when the dataset size is reasonably large, the model can be very complex to
fit all the samples.

m When there are too many samples, a simple boundary would again be the best
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Neuron Loss

Assumption: neurons have to work together to create a
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Figure: Prediction probability surface of the networks trained on the 2-d Gaussian dataset. Each
axis represents one input feature range from [-3,3].
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Neuron Loss

Train without dropout, test with dropout.

Figure: Test accuracy vs. dataset sizes. Dropout is only applied in the test phase.
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Neuron Loss

m When neurons work together to create a complex boundary, it is vulnerable to
neuron loss.

m If a model is not sensitive to neuron loss, applying dropout would not make a
difference.
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Conclusion

m Dropout doesn’t work when the training set is too small or too large.

m Large networks need more training samples to make dropout work.
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Conclusion

Dropout doesn’t work when the training set is too small or too large.

Large networks need more training samples to make dropout work.

m The model’s complexity is high when the dataset is reasonably large.

Dropout works when the model’s complexity is high.
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