Regularization Effect of Dropout

Xunyi Zhao Supervisor: David Tax

Regularization

Overfitting: when the model is too flexible, its training performance can be much better than the test performance

Regularization

Overfitting: when the model is too flexible, its training performance can be much better than the test performance

Figure: Fitting the same dataset with different functions

X.Zhao-10@student.tudelft.nl

Regularization Effect of Dropout

Dropout

Deep neural networks are flexible, need regularizers to prevent overfitting.

Dropout

Deep neural networks are flexible, need regularizers to prevent overfitting.

Dropout: randomly replace the outputs of some neurons as 0's during training.

Figure: Srivastava N, Hinton G, Krizhevsky A, et al. *Dropout: a simple way to prevent neural networks from overfitting.* 2014

Dropout

How does the dataset size affect dropout's performance?

Figure: Srivastava N, Hinton G, Krizhevsky A, et al. *Dropout: a simple way to prevent neural networks from overfitting.* 2014.

Behaviors

Binary classification task, each class from a 10-d Gaussian distribution. Generalization gap = Training accuracy - Test accuracy.

Figure: Left: (10-10-10-2) networks. Right: (10-100-100-2) networks

Behaviors

- Dropout doesn't work when the training set is too small or too large.
- Large networks need more training samples to make dropout work.

Behaviors

- Dropout doesn't work when the training set is too small or too large.
- Large networks need more training samples to make dropout work.

Number of parameters, norm of weights, etc.

Number of parameters, norm of weights, etc.

Model class

e.g. Rademacher complexity

Specific model

e.g. Norm of weights

Number of parameters, norm of weights, etc.

- Model class
 - e.g. Rademacher complexity
- Specific model
 - e.g. Norm of weights

Effect of dataset sizes \rightarrow complexity of specific models

Complexity measures for specific models:

- **Norm**: Frobenius norm of weights.
- **Sharpness**: Second-order derivative of loss with respect to weights.
- **Sensitivity**: Derivative of prediction with respect to the input data.

Norm: $\sum_{I} \left\| \theta^{(I)} \right\|_{F}$, where $\| \cdot \|_{F}$ is the Frobenius norm.

Sharpness:
$$\sum_{l} \sqrt{\left\|\theta^{(l)}\right\|_{\mathrm{F}}^{2} H^{(l)}}$$
, where $H^{(l)} := \sum_{i,j} \frac{\partial^{2} \mathcal{L}(f_{\Theta}(X), Y)}{\partial \theta_{i,j}^{(l)} \partial \theta_{i,j}^{(l)}}$ [2]

Sensitivity: $E_X [\|\mathbf{J}(X)\|_F]$, where $\mathbf{J}(X) = \partial f_{\Theta}(X) / \partial X^{\mathsf{T}}[1]$

- Complexity is low when the dataset size is very small and very large.
- Large networks find maximum with larger datasets.
- Dropout works when the model's complexity is high.

- Complexity is low when the dataset size is very small **and** very large.
- Large networks find maximum with larger datasets.
- Dropout works when the model's complexity is high.

Predict score over the input space:

Predict score over the input space:

Predict score over the input space:

- When the dataset is small, overfitting the samples does not require a complex boundary.
- Only when the dataset size is reasonably large, the model can be very complex to fit all the samples.
- When there are too many samples, a simple boundary would again be the best choice.

- When the dataset is small, overfitting the samples does not require a complex boundary.
- Only when the dataset size is reasonably large, the model can be very complex to fit all the samples.
- When there are too many samples, a simple boundary would again be the best choice.

Assumption: neurons have to work together to create a complicated boundary.

Train without dropout, test with dropout.

Figure: Test accuracy vs. dataset sizes. Dropout is only applied in the test phase.

- When neurons work together to create a complex boundary, it is vulnerable to neuron loss.
- If a model is not sensitive to neuron loss, applying dropout would not make a difference.

- When neurons work together to create a complex boundary, it is vulnerable to neuron loss.
- If a model is not sensitive to neuron loss, applying dropout would not make a difference.

Conclusion

- Dropout doesn't work when the training set is too small or too large.
- Large networks need more training samples to make dropout work.

Conclusion

- Dropout doesn't work when the training set is too small or too large.
- Large networks need more training samples to make dropout work.
- The model's complexity is high when the dataset is reasonably large.
- Dropout works when the model's complexity is high.

Conclusion

- Dropout doesn't work when the training set is too small or too large.
- Large networks need more training samples to make dropout work.
- The model's complexity is high when the dataset is reasonably large.
- Dropout works when the model's complexity is high.

References I

- Roman Novak et al. 'Sensitivity and generalization in neural networks: an empirical study'. In: *arXiv preprint arXiv:1802.08760* (2018).
- Yusuke Tsuzuku, Issei Sato and Masashi Sugiyama. 'Normalized flat minima: Exploring scale invariant definition of flat minima for neural networks using pac-bayesian analysis'. In: *International Conference on Machine Learning*. PMLR. 2020, pp. 9636–9647.