
Managing Vertical Memory
Elasticity in Containers

Carlos Henrique Nicodemus, Cristina Boeres and Vinod Rebello
Instituto de Computação – Universidade Federal Fluminense – Brazil

{boeres,vinod}@ic.uff.br, {maria-cristina.boeres,vinod.rebello}@inria.fr

Paper presented at
13th IEEE/ACM International Conference on Utility and Cloud Computing, 2020

https://doi.org/10.1109/UCC48980.2020.00032

Talk Outline

► Motivation

► Horizontal vs Vertical Container Elasticity

► Related Work

► VEMoC - Vertical Elasticity Management of Containers

► Evaluation Results

► Conclusions and Future Work

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 2

Motivation

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 3

► Latest research (2018) suggests that the energy consumption of data
centres (DCs) accounts for 1% of the energy produced worldwide

► Although consumption has been rising over the last 2 decades, this
percentage is the same as it was in 2010!

► Due in part to the transitioning to more efficient cloud DCs

► Commercial cloud DCs have strong financial incentives to focus on
optimising efficiency

► While they have achieved significant gains over the last decade, it is getting
harder

► Smaller edge DCs have fewer available resources and are thus driven to
support multi-tenancy and higher degrees of resource sharing

Motivation

► One aspect of efficiency in cloud computing is resource allocation

► How much of each physical resource should be allocated to each hosted virtual
environment?

► Very difficult to answer without prior knowledge of the application's behavior.

► Both under- and over-provisioning lead to problems

► Deterioration in performance and/or possible malfunctions in the application.

► Unnecessary additional costs for the user

► Idle or underutilized resources on the side of the provider.

► Different applications have different demands that generally vary over time

► Elastic environments expand and contract allocations to meet demand.

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 4

Horizontal Resource Elasticity

► Horizontal elasticity is achieved by
replicating containers

► Appropriate for online applications
compatible with replication

► Used extensively by enterprise cloud
orchestrators

► Focuses more on maintaining a given
service QoS than maximizing resource
utilization efficiency

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 5

Vertical Resource Elasticity

► Expand or shrink the resources allocated to a single container

► Involves changing the resource allocation limits

► Changes are made at runtime, without having to stop and restart the
container

► Known to be useful for non-distributed applications

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 6

Challenges/Goals

► Improving resource utilization and maximising throughput are two of
many goals service providers strive for to reduce operating costs

► While containers consume resources elastically, frameworks are still
required to:

► Allocate resources according to availability, and;

► Limit resource allocations to avoid interference.

► This work aims to manage vertical memory elasticity in containers

► “Task scheduling” and “Resource allocation” in unison

► To help providers increase server utilization without incurring significant
degradations in performance of individual co-allocated containers

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 7

Related Work

► Enterprise Orchestrators: Docker swarm, Kubernetes, Openshift

► Focus mostly on horizontal resource elasticity

► Need user interaction and environment configuration

► In the literature:

► Vertical Elasticity of Memory based on upper/lower threshold limits;

► With fixed elasticity adjustment ratios;

► Long scheduling cycles (> 20 seconds) can mean approaches are more
susceptible to making decisions too late.

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 8

Vertical Elasticity Management of
Containers - VEMoC
► An architecture to manage the life cycles of co-located containers

► This paper focuses on the distribution of host memory

► Manipulating Container Memory Limit (CML) at runtime

► The predicted memory requirement of container is based on:

► Fine-grained monitoring of container and host metrics

► Optimised use of rates of changes to determine consumption trends

► If host memory becomes scarce or insufficient to meet demand

► Containers may “collaborate” by donating some (or be suspended and
donate all) of their memory allocation to others in need

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 9

VEMoC Architecture

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 10

Host Manager

► Host Monitor

► Obtains monitoring data;

► Request Receiver

► Receives new jobs from Cloud Manager;

► “Creates” and queues the container request

► Container Manager

► Manages the distribution of the host’s memory amongst containers

► Manages the life cycle of containers allocated to this host

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 11

Container Life-Cycle

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 12

VEMoC Algorithm

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 13

Phase 1

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 14

► Receive and queue container requests from Cloud Manager

► Calculates the amount of memory required to start all currently
inactive containers

► This includes containers in the state QUEUED or SUSPENDED

► Calculate the amount of non allocated memory is available on the
host

Phase 2

► Classifies active containers by extrapolating their memory
consumption from the previous scheduling interval

► Containers are classified as RISING, FALLING or STABLE based on their
major page faults, page-in, page-out rates and memory and swap usage

► Predicts the amount of memory expected to be consumed by a container
until the CML can be updated again during the following scheduling
interval

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 15

Phases 3 and 4

► In general, CML is defined to include a reserve to cover any
unforeseen spike in memory consumption during the next scheduling
interval

► Phase 3 remove any over-estimation of the CML of STABLE and
FALLING containers

► Phase 4 repossess memory from candidate STABLE containers

► Reducing the CML below a container’s memory consumption to force it to
swap-out some of its inactive memory

► The suitability of containers is determined soon after they become
STABLE

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 16

Phase 5

► Phases 1 and 2 determine the total memory demand for current
scheduling interval

► If the host does not have enough available memory to meet the
demand, Phases 3 and 4 tries to extract additional memory

► Phase 5 thus distributes this memory to those containers that need
theirs CMLs to be increased in accordance to the following priority:

1. Paused Containers;

2. Containers that brought in pages from swap during the last interval;

3. Other containers whose consumption is expected to exceed their current
CML.

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 17

Phase 6

► If Phase 5 cannot meet the needs of the active containers, Phase 6
considers preempting containers

► Of the remaining unsatisfied containers, some may need to be:

► Paused to prevent excessive performance degradation due to swap
utilisation, or be;

► Suspended in order to free up enough memory for other containers in
need.

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 18

Phase 7

► Considers initiating inactive containers if there was no need for Phase
6

► First, available memory permitting, VEMoC attempts to

► Resume suspended containers, then

► Start queued containers awaiting execution

► Priority in each group, is given to the container with longest runtime
or wait time

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 19

Experiments

► Our tests were executed on a host with:

► 2x 6 core/12 threads Intel Xeon X5650 @ 2.67GHz;

► 24 GiB of DDR3 RAM memory;

► 8 GiB of swap memory;

► 2 TB of SATA disk;

► CentOS Linux 7.7, kernel 4.20.11 and LXC 3.2.1

► Executing two synthetic jobs:

► J1 – iterates over the elements a given vector of size s

► J2 – similar to J1, but exploits data locality by dividing and processing the
vector in blocks of size s/n, block by block.

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 20

Experiments

► VEMoC performance is compared with three commonly adopted forms
of defining CMLs (loosely based on Kubernetes QoS terminology):

► Guaranteed - The CML is set a priori to the maximum amount of memory
required, and the job can only be submitted when that amount is
available - effectively, the required amount of memory is pre-reserved;

► Fair Share - Prior to execution, the available memory is divided equally
among the jobs to be executed;

► Best Effort - Runs jobs as they arrive if the minimum memory limit is
available. During execution, containers can use whatever free memory is
available, up to their maximum memory limit.

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 21

Experiments

► The comparisons are based on five metrics:
► Total Scenario Execution Time (TSET) is the wallclock time from first

job submission to end of the last job’s execution, in seconds;
► Average Job Turnaround Time (AJTT) in seconds;
► Average Memory Utilization (MemUtil) is the average of the average

percentage memory utilisation of each job;
► Total Memory-Time Product (TMTP) is a cost metric (in millions of

page-seconds) for clients, which considers the duration the memory was
reserved for in that scenario;

► The Average Host Memory Utilization (AHMU) percentage represents the
effective use of host memory during the scenario's execution, i.e., over
the period TSET.

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 22

Results – Scenario 1

► Executes two J1 jobs of 4GiB, with an interval of 50 seconds between
them, on a host with 6GiB of available memory

► There is not enough memory, so who gets what?

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 23

TSET (s) AJTT (s) MemUtil (%) TMTP AHMU (%)

Guaranteed 843.2
(4.9%)

606.3
(2.6%)

87.1
(10.1%)

886.98
(10.9%)

58.1
(5.7%)

Fair Share 1245.2
(54.9%)

1193.2
(101.8%)

96.4
(0.5%)

1876.71
(134.6%)

92.2
(49.7%)

Best Effort 1284.0
(59.7%)

1236.9
(109.2%)

95.2
(1.8%)

2019.6
(152.5%)

92.8
(50.6%)

VEMoC 804.0 591.2 96.9 799.8 61.6

Results – Scenario 2

► Executes a J2 job of 4GiB, followed by a J1 job also of 4GiB, 100
seconds later, on a host with 6 GiB of available memory

► Still not enough memory, can we get some from thin air?

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 24

TSET (s) AJTT (s) MemUtil (%) TMTP AHMU (%)

Guaranteed 841.1
(58.8%)

582.8
(36.7%)

73.1
(22.3%)

884.8
(50.6%)

48.8
(28.0%)

Fair Share 793.2
(49.8%)

561.8
(31.8%)

83.1
(11.7%)

883.6
(50.4%)

60.5
(10.8%)

Best Effort 637.9
(20.4%)

483.1
(13.2%)

71.1
(24.4%)

1002.7
(70.7%)

65.3
(3.7%)

VEMoC 529.7 426.2 94.1 587.5 67.8

Results – Scenario 3

► Execute a J2 jobs with 4GiB, followed by five J1 jobs with 4GiB, at 10
seconds interval, using the 24 GiB of host memory

► What happens under extreme stress?

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 25

TSET (s) AJTT (s) MemUtil (%) TMTP AHMU (%)

Guaranteed 867.8
(59.6%)

506.9
(3.1%)

82.6
(11.8%)

2788.4
(5.4%)

42.8
(42.2%)

Fair Share 779.6
(43.4%)

663.6
(35.0%)

84.9
(9.3%)

4093.0
(54.7%)

73.7
(0.4%)

Best Effort 715.1
(31.5%)

543.4
(10.5%)

72.6
(22.4%)

4407.8
(66.7%)

63.0
(14.9%)

VEMoC 543.6 491.7 93.6 2644.9 74.0

Conclusions

► VEMoC obtains better utilization:
► by using page level predicted memory consumption rates;
► using fine grain vertical elasticity of memory;
► combining techniques of memory stealing and container preemption.

► VEMoC also demonstrated higher efficiencies for the service provider,
and better performances and lower costs for the client.

► As future work, intend to investigate:

► Alternative libraries that implement container suspension;

► the impact of scheduling policies on memory utilization efficiencies, and;

► With VEMoCs elastic management of CPU, integrate CPU throttling with
the management of vertical memory elasticity.

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 26

Acknowledgements

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 27

Any Questions?

09/12/2020UCC 2020 - Managing Vertical Memory Elasticity in Containers 28

