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Introduction: scale is the enemy
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Introduction: scale is the enemy

Time

p1

p2

p3

If three processors have around 20 faults during a time t (µ = t
20 )...

Time

p

...during the same time, the platform has around 60 faults (µN = t
60 )

µN = µ
N

Valentin Le Fèvre (BSC) Resilient algorithms in HPC and linear algebra for new architecturesJanuary 27, 2022 4 / 49



Introduction: scale is the enemy
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Introduction: High Performance Computing

High Performance Computing: gathering a large number of
components to decrease execution time of applications

Driving force: simulations/data-based in scientific research

More components ⇒ More failures

Resilience [The Top Ten Exascale Research Challenges, ASCAC
Subcommittee (2014)]

Ensuring correct scientific computation in face of faults, reproducibility,
and algorithm verification challenges.
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Two different types of faults

Fail-stop errors:

Complete stop of the application

Dead component, power failure, bug in the code, . . .

Easy to detect

No correction possible as progress is lost

Silent errors:

Wrong results (bitflip for example)

Cosmic radiations, faulty ALUs, . . .

Unnoticed if a detection mechanism is not used

Some detection mechanisms can be used to correct
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A first solution: checkpointing

Regularly save the state of the application

For silent errors: add a verification mechanism
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A first solution: checkpointing

Period T , minimize overhead H(T ) = E(T+C)
T − 1

Theorem - Young/Daly’s formula

Topt =

√
2C

λN
=
√

2CµN = Θ(λ−
1
2 ) (1)

Hopt =
√

2CλN + o(λ
1
2 ) = Θ(λ

1
2 ) (2)

Recall that λN = Nλ = 1
µN

= N
µ

Valentin Le Fèvre (BSC) Resilient algorithms in HPC and linear algebra for new architecturesJanuary 27, 2022 7 / 49



A second solution: replication

Replication

Execute some (portion of) work several times to detect/correct errors.
Each execution is called a replica.

For fail-stop errors

If one of the replicas works, we are done
More replicas ⇒ More chance to succeed

For silent errors

If two replicas have different outputs: an error is detected
With three replicas: majority rule used to correct

Replication decreases the rate of fatal failures but we need more
resources.
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Replication

Full replication: efficiency < 50%

Can replication+checkpointing be more efficient than checkpointing
alone?

Study by Ferreira et al. [SC’2011]: yes

Revisited by Hussain, Znati and Melhem [SC’2018]: yes
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Model by Ferreira et al. [SC’ 2011]

Platform with N = 2b processors arranged into b pairs

Parallel application with b processes, each replicated

When a replica is hit by a failure, it is not restarted

Application fails when both replicas in one pair have been hit
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Example

p1

p2
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p2

p1

p2
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Time
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Pair2

Pair3
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Why Replication?

With µ = 5 years, time to reach 90% chance of fatal failure:

No replication 24 minutes for N = 100, 000
No replication 12 minutes for N = 200, 000
Replication 85 hours for N = 200, 000 (b = 100, 000 pairs)
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Checkpointing Period

Replication combined with periodic checkpoint-restart à la
Young/Daly

Restart after interruption instead of after first failure

Many failures needed to interrupt the application
⇒ checkpointing period much larger than without replication

Optimal period?
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Mean Time To Interruption

N = 2b, b processor pairs

nfail(2b) expected number of failures to interrupt the applications

MTTI MN = M2b = Mean Time to Interruption
⇒ replaces MTBF from the application perspective

MN = M2b = nfail(2b)× µ2b = nfail(2b)× µ

2b
=

nfail(2b)

2λb
(3)
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Checkpointing

No Replication Topt =
√

2µNC (4)

Full Replication Topt =
√

2MNC (5)
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What’s Wrong?

Topt =
√

2MNC

Just an approximation. How accurate?

Risk is increasing as more and more processors die until application
crash
⇒ Periodic checkpointing (most likely) not optimal /
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no-restart vs. restart

C C C C

C
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no-restart fails
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restart

Restart all failed processors (if any) after each checkpoint
instead of only after interruption

What is the additional cost?

What is the optimal checkpointing period?
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Combined Checkpoint-Restart

Cost of a checkpoint and restart wave CR

• one instance of each surviving process saves state (checkpoint)
• processes for missing replicas of the replicas allocated
• new processes load current (checkpointed) state and join system

In-memory checkpoint replication
• the buddy process and the replica are the same process
• surviving processes upload their checkpoint directly onto memory of
newly spawned replicas
⇒ no exchange of checkpoints between pair of surviving buddies

Worst case: sequential approach, CR = 2C
Best case: buddy checkpointing, negligible overhead, CR ≈ C
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Checkpointing Period

Periodic checkpointing is optimal for restart

T rs
opt =

(
3CR

4bλ2

) 1
3

= Θ(λ−
2
3 ). (6)

Hrs(T rs
opt) =

(
3CR
√
bλ√

2

) 2
3

+ o(λ
2
3 ) = Θ(λ

2
3 ) (7)

An order of magnitude longer!
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Notations

restart
Restart(T ) and overhead Hrs(T )
T rs

opt optimal period

no-restart
NoRestart(T ) and overhead Hno(T )
T no

MTTI used as ’optimal’ period (analogy with Young/Daly)
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Model Accuracy
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Model Accuracy With Trace Logs
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Impact of Checkpointing Period

0 10000 20000 30000 40000
Period length T (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ti
m

e 
ov

er
he

ad

Restart(T) (CR = C)
Restart(T) (CR = 1.5C)
Restart(T) (CR = 2C)

rs(T)
NoRestart(T)
Optimums
Tno

MTTI

0 20000 40000 60000 80000 100000
Period length T (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e 
ov

er
he

ad

Restart(T) (CR = C)
Restart(T) (CR = 1.5C)
Restart(T) (CR = 2C)

rs(T)
NoRestart(T)
Optimums
Tno

MTTI

C = 60 seconds C = 600 seconds

µ = 5 years, b = 105 processor pairs
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Impact of MTBF
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I/O Pressure

The I/O pressure decreases when the checkpointing period increases.
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Time To Solution

No replication, N parallel processors

Tfinal = (Hopt + 1)

(
γ +

1− γ
N

)
Tseq, Hopt =

√
2C

µN

Replication, N = 2b, b replica pairs

Tfinal = (Hopt + 1)(1 + α)

(
γ +

2(1− γ)

N

)
Tseq

no-restart Hopt =
√

2C
MN

restart Hopt =
(

3CR
√
Nλ

2µ

) 2
3
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Time To Solution
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Replication Useful?
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Conclusion

Opinion is divided about replication

Checkpoint/restart alone cannot ensure full reliability in heavily
failure-prone environments

When replication is needed (large C , short µ, large γ),
magic recipe:

use full replication
restart dead processors at each checkpoint (overlap if possible)
use T rs

opt

Not in this presentation: we can also minimize the energy
consumption
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Context: Cholesky Factorization

A: symmetric definite positive matrix

A = LLT

Ax = b ⇒ LLT x = b ⇒ x = (LT )−1L−1b

Several solvers for sparse matrices: CHOLMOD, PaStiX, MUMPS, . . .

CHOLMOD is originally a sequential code.
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Structure of a solver

Usually 3 phases:

Analyze

⇒ perform some optimizations (reduce fill-in), build the
elimination tree, aggregate nodes...

Factorize

⇒ main part of the solver, depends on the optimizations
done in the previous phase.

Solve

⇒ simple: triangular solve.
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Elimination tree

Describes the structure of the sparse matrix

One node = one column

7

6

6,7

2

1

1,2

3

1,2,3

5

4

4,5

Node amalgamation: supernodes
Each supernode can be transformed with BLAS calls.
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Elimination tree

Describes the structure of the sparse matrix

One node = several contiguous columns
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Node amalgamation: supernodes
Each supernode can be transformed with BLAS calls.

Valentin Le Fèvre (BSC) Resilient algorithms in HPC and linear algebra for new architecturesJanuary 27, 2022 37 / 49



Elimination tree

Describes the structure of the sparse matrix

One node = several contiguous columns

7

6

6,7

2

1

1,2 3

1,2,3

5

4

4,5

Node amalgamation: supernodes
Each supernode can be transformed with BLAS calls.
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BLAS kernels in Cholesky

Already factorized

To be factorized later

POTRF

TRSM

GEMM

GEMM

GEMM
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Task-based approach

1 f o r ( s = 0 ; s < n s u p e r ; s++)
2 {
3 #pragma omp t a s k i n ({∗( d e p i n [ s ] [ i i ] ) , i i =0; num in [ s ]} ) out (∗ d e p o u t [ s ] ) \
4 d e f a u l t ( none ) s h a r e d ( . . . ) f i r s t p r i v a t e ( . . . ) p r i v a t e ( . . . ) l a b e l ( o u t e r )
5 {
6 // C o n s t r u c t i o n o f t h e s u p e r n o d e
7 f o r ( i d x S = STp [ s ] ; i d x S < STp [ s +1] ; i d x S++) {
8 d = STi [ i d x S ] ;
9 i f ( d==s ) c o n t i n u e ;

10 #pragma omp t a s k d e f a u l t ( none ) s h a r e d ( . . . ) \
11 p r i v a t e ( . . . ) f i r s t p r i v a t e ( . . . ) p r i v a t e ( . . . ) l a b e l ( i n n e r )
12 {
13 //SYRK and GEMM
14 o m p s e t l o c k (& omp lock ) ;
15 // Assembly o f s u p e r n o d e
16 o m p u n s e t l o c k (& omp lock ) ;
17 }
18 }
19 #pragma omp t a s k w a i t
20 //POTRF and TRSM
21 }
22 }
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Selective Nesting

bone010

(a) Without nested tasks (Non-nested)

(b) With nested tasks (Nested)
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Selective Nesting

inline 1

(c) Without nested tasks (Non-nested)

(d) With nested tasks (Nested)
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Selective Nesting

Trade-off between parallelism and overhead of task creation

If no task is nested: lack of parallelism, especially when reaching the
root of the elimination tree

If every task is nested: too many tasks, overhead of task creation and
destruction becomes a bottleneck
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Determining threshold D
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Valentin Le Fèvre (BSC) Resilient algorithms in HPC and linear algebra for new architecturesJanuary 27, 2022 42 / 49



Determining threshold D

Analysis on a few matrices:

Outer tasks with most inner tasks should be nested

Optimal D always less than 30% of max number of inner tasks

Ratio between number of columns and number of tasks tend to be
close (at optimal D)

⇒ Algorithm Opt-D

If an inner task is small: keep it inside the outer loop ⇒ Algorithm
Opt-D-Cost
We will compare to mt-BLAS: sequential cholmod with multi-threaded
BLAS.
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Valentin Le Fèvre (BSC) Resilient algorithms in HPC and linear algebra for new architecturesJanuary 27, 2022 42 / 49



Outline

1 Resilience
Introduction
Process Replication

Common method
New Strategy
Experiments

2 Selective Nesting
Introduction/Context
OpenMP parallelization of CHOLMOD and selective nesting
Results and perspectives

3 Risc-V algebra
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Results
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Conclusion

Task-graph should depend on the data

Finding a good granularity can drastically improve the performance

Algorithm Opt-D-Cost suitable for a large variety of matrices
without trying lots of configurations each time

mt-BLAS can be a good alternative for several matrices that can we
can detect
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Conclusion

Algorithm tuned from experiments on a given platform (here A64FX
processors)

For a few matrices in the evaluation, the performance is degraded

Is there a way to find a good model, used to determine D afterwards?
Hopefully, not platform-dependent

What makes some matrices very different?

Implementations of other algorithms (LU/QR) to try this strategy
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European Processor Initiative

Main goal: Develop European-based processors for ExaScale

Rely on ARM architecture for main chips and Risc-V for accelerators

Energy efficiency is one of the main challenges

Risc-V initiative: to provide royalty-free ISA

Needs to redesign algorithms using the vector extension
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Sparse Matrix Multiplication

Matrices are in Compressed Sparse Column format.

SPA: SParse Accumulator

simple to implement
does not scale well ⇒ one column by one

ESC: Expand-Sort-Compress

More steps in the algorithm and use of sort
Most of the algorithm is fully parallelizable using loop raking

stride
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BLIS

BLIS is a portable BLAS library

How to vectorize the kernels?

Collaboration with University of Madrid

BSC is responsible for evaluating the library using test chips
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