

Hands-on tutorial on PASTIX with GPU

Tony Delarue — Mathieu Faverge — Pierre Ramet

Introduction

Innia Tony Delarue - Hands-on tutorial on PASTIX with GPU

Problem and context

Problem: Solve Ax = b

- Factorize A = LU, where A is a sparse matrix
- Solve Ly = b
- Solve Ux = y

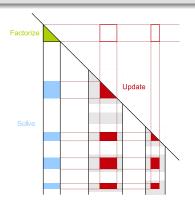
Innía

Problem and context

Problem: Solve Ax = b

- Factorize A = LU, where A is a sparse matrix
- Solve Ly = b
- Solve Ux = y

Main steps of the sparse solver


- 1. Reorganize the unknows to reduce the fill-in.
- 2. Create the symbolic matrix *L*.
- 3. Factorize the matrix.
- 4. Solve the linear system.

PASTIX factorization principle

Algorithm for a column-block

- 1. <u>Factorize</u> the diagonal block (POTRF/GETRF).
- 2. <u>Solve</u> extra-diagonal blocks (TRSM).
- 3. Update the other column-blocks (GEMM).

PASTIX functionalities

Functionalities by scheduler

	Seq/Static/Dynamic	PARSEC/STARPU
POTRF (Cholesky)	SHM/MPI/LR	SHM/MPI/LR/GPU
PXTRF (LL^t for complex)	SHM/MPI/LR	SHM/MPI/LR/ <mark>GPU</mark>
HETRF (LDL^h)	SHM/MPI/LR	SHM/MPI/LR/ <mark>GPU</mark>
SYTRF (LDL^t)	SHM/MPI/LR	SHM/MPI/LR/ <mark>GPU</mark>
GETRF (LU)	SHM/MPI/LR	SHM/MPI/LR/GPU

Ínría_

Runtime presentation

STARPU et PARSEC

- Create a task diagram. It allow us to anticipate dependencies between tasks.
- Share the datas on the different computation devices.
- Take care of computer heterogeneity.

Innía

Obtaining better peformances with PASTIX-GPU

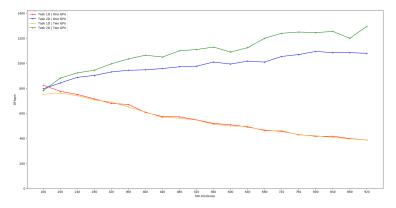
Ínría

Tony Delarue - Hands-on tutorial on PASTIX with GPU

Obtaining better peformances - models

Define your performance model

- PASTIX allows you to define you performance model.
- POTRF/GETRF time kernel estimation: $a3 * N^3 + a2 * N^2 + a1 * N + a0$
- TRSM time kernel estimation: $a5*M*N^2 + a4*M*N + a3*N^2 + a2*M + a1*N + a0$
- GEMM time kernel estimation: a7*M*N*K+a6*M*K+a5*K*N+a4*M*N+a3*M+a2*N+a1*K+a0
- Need to be coherent with your hardware.
- Default value : a7 = 2./1.2e12


Obtaining better peformances - granularity

1D or 2D task

We can play with the granularity of the computation tasks.

- 1D if we consider a block-column.
- 2D if we consider only blocks.

Obtaining better peformances - granularity

PaStiX compared performance with StarPU on sirocco17 depending of the blocksize

Obtaining better peformances - PARSEC

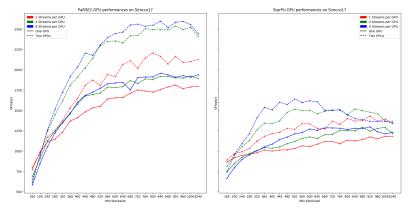
PARSEC

In your home directory, you can create a \$HOME/parsec/mca-params.conf file to better configure PARSEC.

- device_show_capabilities = 1
- device_show_statistics = 1
- device_cuda_max_streams = 10 # ≥ 3 #
- device_cuda_max_events_per_stream = 4
- runtime_comm_short_limit = 0

Obtaining better performances - STARPU

STARPU

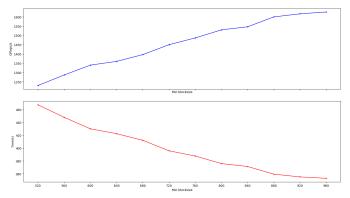

STARPU contains a set of environment variables to define its comportement with GPUs:

- STARPU_CUDA_PIPELINE=4
- STARPU_NWORKER_PER_CUDA=8
- STARPU_CUDA_THREAD_PER_WORKER= [0||1]

You can either export them or call them at the beginning of your command line.

nnía

Obtaining better performances - Experiments


PaStiX compared GPU performance on sirocco17 depending of the number of streams per GPU

Experiments with EoCoE matrix

StarPU-GPU factorization performances and time on Sirocco17 for the Alya matrix.

2 GPUs with 2D tasks and 8 streams per GPU.

Inría

Tony Delarue – Hands-on tutorial on PASTIX with GPU

Conclusion

Conclusion

- Creation of user tutorials for PASTIX-GPU use.
- Highligh the parameters to look at according to your GPU.
- Give performance results of EoCoE matrices.

Futur works

- Make PASTIX-GPU scale with PARSEC.
- Understand the gap of performances between PARSEC and STARPU.
- Improve PASTIX-MPI implementation with runtimes to be efficient with GPUs.

Merci pour votre attention !