
Dynamic Task Graph Adaptation with
Recursive Tasks

Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas,
Thomas Morin, Samuel Thibault, Pierre-André Wacrenier

February 2024



Task-based Programming
• Motivations:

> Portable frameworks.
> Exploit complex architectures.

• Applications: Directed Acyclic Graph (DAG).
• Runtime systems: scheduling, data management,

communications, . . .

STF: Sequential Task Flow
• Dependencies:

> Automatically inferred.
> Order of submission.

F(a)
G(a, b)
H(a, c)

submit (F, a:RW)
submit (G, a:R, b:RW)
submit (H, a:R, c:RW)
wait_tasks_completion ()

F

G

H

Introduction - Context

2 — WAMTA, Knoxville — Thomas Morin — February 2024



Task-based Programming
• Motivations:

> Portable frameworks.
> Exploit complex architectures.

• Applications: Directed Acyclic Graph (DAG).
• Runtime systems: scheduling, data management,

communications, . . .

STF: Sequential Task Flow
• Dependencies:

> Automatically inferred.
> Order of submission.

F(a)
G(a, b)
H(a, c)

submit (F, a:RW)
submit (G, a:R, b:RW)
submit (H, a:R, c:RW)
wait_tasks_completion ()

F

G

H

Introduction - Context

2 — WAMTA, Knoxville — Thomas Morin — February 2024



Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ? ⇒ Recursive tasks graphs !

Granularity
• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?

Introduction - Limitations of the STF model

3 — WAMTA, Knoxville — Thomas Morin — February 2024



Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ?

⇒ Recursive tasks graphs !

Granularity
• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?

Introduction - Limitations of the STF model

3 — WAMTA, Knoxville — Thomas Morin — February 2024



Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ? ⇒ Recursive tasks graphs !

Granularity
• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?

Introduction - Limitations of the STF model

3 — WAMTA, Knoxville — Thomas Morin — February 2024



Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ? ⇒ Recursive tasks graphs !

Granularity
• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?

Introduction - Limitations of the STF model

3 — WAMTA, Knoxville — Thomas Morin — February 2024



Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ? ⇒ Recursive tasks graphs !

Granularity
• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?

Introduction - Limitations of the STF model

3 — WAMTA, Knoxville — Thomas Morin — February 2024



Objectives
• Adapt task implementation at

runtime.
• No spurious synchronization.

Principles
1. No limit for the hierarchy depth.
2. Fine-grained dependencies.
3. Transparent data management.

> Automatic data partition.

• Recursive task execution:

> Remain regular task.
> Insert a subgraph: split.

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R4

T2T1

R1 R3

T2T1

R1 R3

P U

T2

Recursive Tasks in StarPU

4 — WAMTA, Knoxville — Thomas Morin — February 2024



Objectives
• Adapt task implementation at

runtime.
• No spurious synchronization.

Principles
1. No limit for the hierarchy depth.
2. Fine-grained dependencies.
3. Transparent data management.

> Automatic data partition.

• Recursive task execution:

> Remain regular task.
> Insert a subgraph: split.

T1

R1 R3

R2 R4

T2

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R4

T2T1

R1 R3

T2T1

R1 R3

P U

T2

Recursive Tasks in StarPU

4 — WAMTA, Knoxville — Thomas Morin — February 2024



Objectives
• Adapt task implementation at

runtime.
• No spurious synchronization.

Principles
1. No limit for the hierarchy depth.
2. Fine-grained dependencies.
3. Transparent data management.

> Automatic data partition.

• Recursive task execution:

> Remain regular task.
> Insert a subgraph: split.

T1

R1 R3

R2 R4

T2

T1

R1 R3

R2 R4

T2

T1

R1 R3

R2 R4

T2T1

R1 R3

R4

T2T1

R1 R3

T2T1

R1 R3

P U

T2

Recursive Tasks in StarPU

4 — WAMTA, Knoxville — Thomas Morin — February 2024



Objectives
• Adapt task implementation at

runtime.
• No spurious synchronization.

Principles
1. No limit for the hierarchy depth.
2. Fine-grained dependencies.
3. Transparent data management.

> Automatic data partition.

• Recursive task execution:
> Remain regular task.

> Insert a subgraph: split.

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2

T1

R1 R3

R2 R4

T2

T1

R1 R3

R4

T2T1

R1 R3

T2T1

R1 R3

P U

T2

Recursive Tasks in StarPU

4 — WAMTA, Knoxville — Thomas Morin — February 2024



Objectives
• Adapt task implementation at

runtime.
• No spurious synchronization.

Principles
1. No limit for the hierarchy depth.
2. Fine-grained dependencies.
3. Transparent data management.

> Automatic data partition.

• Recursive task execution:
> Remain regular task.
> Insert a subgraph: split.

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2

T1

R1 R3

R4

T2

T1

R1 R3

T2T1

R1 R3

P U

T2

Recursive Tasks in StarPU

4 — WAMTA, Knoxville — Thomas Morin — February 2024



Objectives
• Adapt task implementation at

runtime.
• No spurious synchronization.

Principles
1. No limit for the hierarchy depth.
2. Fine-grained dependencies.
3. Transparent data management.

> Automatic data partition.

• Recursive task execution:
> Remain regular task.
> Insert a subgraph: split.

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R4

T2

T1

R1 R3

T2

T1

R1 R3

P U

T2

Recursive Tasks in StarPU

4 — WAMTA, Knoxville — Thomas Morin — February 2024



Objectives
• Adapt task implementation at

runtime.
• No spurious synchronization.

Principles
1. No limit for the hierarchy depth.
2. Fine-grained dependencies.
3. Transparent data management.

> Automatic data partition.

• Recursive task execution:
> Remain regular task.
> Insert a subgraph: split.

T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R2 R4

T2T1

R1 R3

R4

T2T1

R1 R3

T2

T1

R1 R3

P U

T2

Recursive Tasks in StarPU

4 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Barrier between
parent tasks

Figure: Fine-grain
dependencies

Runtime Fine-grain Automatic data HeterogeneityDependencies Partition

TaskFlow

✗ ✗ ✓

PaRSEC

✗ ✗ ✓

IRIS

✗ ✓ ✓

OmpSs

✓ ✗

StarPU

✓ ✓ ✓

Recursive tasks - State of the Art

5 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Barrier between
parent tasks

Figure: Fine-grain
dependencies

Runtime Fine-grain Automatic data HeterogeneityDependencies Partition

TaskFlow ✗

✗ ✓

PaRSEC ✗

✗ ✓

IRIS ✗

✓ ✓

OmpSs

✓ ✗

StarPU

✓ ✓ ✓

Recursive tasks - State of the Art

5 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Barrier between
parent tasks

Figure: Fine-grain
dependencies

Runtime Fine-grain Automatic data HeterogeneityDependencies Partition

TaskFlow ✗

✗ ✓

PaRSEC ✗

✗ ✓

IRIS ✗

✓ ✓

OmpSs ✓

✗

StarPU ✓

✓ ✓

Recursive tasks - State of the Art

5 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Barrier between
parent tasks

Figure: Fine-grain
dependencies

Runtime Fine-grain Automatic data HeterogeneityDependencies Partition

TaskFlow ✗ ✗

✓

PaRSEC ✗ ✗

✓

IRIS ✗ ✓

✓

OmpSs ✓

✗

StarPU ✓ ✓

✓

Recursive tasks - State of the Art

5 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Barrier between
parent tasks

Figure: Fine-grain
dependencies

Runtime Fine-grain Automatic data HeterogeneityDependencies Partition

TaskFlow ✗ ✗ ✓

PaRSEC ✗ ✗ ✓

IRIS ✗ ✓ ✓

OmpSs ✓ ✗

StarPU ✓ ✓ ✓

Recursive tasks - State of the Art

5 — WAMTA, Knoxville — Thomas Morin — February 2024



Which task should we split?

Efficiency VS Completion Time

When do we choose to split task?

Submission, execution, ...

Dynamic task graph adaptation : splitting tasks

6 — WAMTA, Knoxville — Thomas Morin — February 2024



Which task should we split?

Efficiency VS Completion Time

When do we choose to split task?

Submission, execution, ...

Dynamic task graph adaptation : splitting tasks

6 — WAMTA, Knoxville — Thomas Morin — February 2024



Which task should we split?

Efficiency VS Completion Time

When do we choose to split task?

Submission, execution, ...

Dynamic task graph adaptation : splitting tasks

6 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations

1. Split efficiency.
2. Current parallelism on Runtime System.

Split the task - Gantt chart

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.
Cumulated time: 8 units.

Completion Time versus Efficiency

Which task do we split

7 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Split the task - Gantt chart

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.
Cumulated time: 8 units.

Completion Time versus Efficiency

Which task do we split

7 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Split the task - Gantt chart

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.
Cumulated time: 8 units.

Completion Time versus Efficiency

Which task do we split

7 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Split the task - Gantt chart

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.
Cumulated time: 8 units.

Completion Time versus Efficiency

Which task do we split

7 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 4 units.
Cumulated time: 11 units.

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.
Cumulated time: 8 units.

Completion Time versus Efficiency

Which task do we split

7 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 4 units.
Cumulated time: 11 units.

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.
Cumulated time: 8 units.

Completion Time versus Efficiency

Which task do we split

7 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 4 units.

Cumulated time: 11 units.

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.

Cumulated time: 8 units.
Completion Time versus Efficiency

Which task do we split

7 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 4 units.
Cumulated time: 11 units.

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.
Cumulated time: 8 units.

Completion Time versus Efficiency

Which task do we split

7 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 4 units.
Cumulated time: 11 units.

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.
Cumulated time: 8 units.

Completion Time versus Efficiency

Which task do we split

7 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 1: Steady State

time

worker 0

worker 1

worker 2

worker 3

Which task do we split

8 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 1: Steady State

time

worker 0

worker 1

worker 2

worker 3

Which task do we split

8 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 1: Steady State

time

worker 0

worker 1

worker 2

worker 3

+ 24 ready tasks

Which task do we split

8 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 1: Steady State

time

worker 0

worker 1

worker 2

worker 3

Which task do we split

8 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 2

time

worker 0

worker 1

worker 2

worker 3

+ 0 ready tasks

Which task do we split

8 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 2 : Starvation

time

worker 0

worker 1

worker 2

worker 3
or

Which task do we split

8 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 2 : Starvation

time

worker 0

worker 1

worker 2

worker 3

Which task do we split

8 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 2 : Starvation

time

worker 0

worker 1

worker 2

worker 3

Which task do we split

8 — WAMTA, Knoxville — Thomas Morin — February 2024



Task life path

app wait
dependencies scheduler

data transfer
data fetching worker

submission release queue execute

When do we choose to split tasks

9 — WAMTA, Knoxville — Thomas Morin — February 2024



Adding the splitter

app wait
dependencies scheduler

data transfer
data fetching worker

reg. task release queue execute

splitterrec. task

rec. task

reg. task

When do we choose to split tasks

9 — WAMTA, Knoxville — Thomas Morin — February 2024



Position of the splitter - at submission

app wait
dependencies scheduler

data transfer
data fetching worker

reg. task release queue execute

splitter

rec.
task

reg.
task

rec. task

• Easy.

• Lack of information.

When do we choose to split tasks

9 — WAMTA, Knoxville — Thomas Morin — February 2024



Position of the splitter - at submission

app wait
dependencies scheduler

data transfer
data fetching worker

reg. task release queue execute

splitter

rec.
task

reg.
task

rec. task

• Easy.

• Lack of information.

When do we choose to split tasks

9 — WAMTA, Knoxville — Thomas Morin — February 2024



Position of the splitter - at submission

app wait
dependencies scheduler

data transfer
data fetching worker

reg. task release queue execute

splitter

rec.
task

reg.
task

rec. task

• Easy.
• Lack of information.

When do we choose to split tasks

9 — WAMTA, Knoxville — Thomas Morin — February 2024



Position of the splitter - Execution

app wait
dependencies scheduler

data transfer
data fetching worker

submission release queue execute

splitter

rec.
task re

c.
ta

sk
re

g.
ta

sk

• Runtime information.

• Useless data transfer: cancel decision.

When do we choose to split tasks

9 — WAMTA, Knoxville — Thomas Morin — February 2024



Position of the splitter - Execution

app wait
dependencies scheduler

data transfer
data fetching worker

submission release queue execute

splitter

rec.
task re

c.
ta

sk
re

g.
ta

sk

• Runtime information.

• Useless data transfer: cancel decision.

When do we choose to split tasks

9 — WAMTA, Knoxville — Thomas Morin — February 2024



Position of the splitter - Execution

app wait
dependencies scheduler

data transfer
data fetching worker

submission release queue execute

splitter

rec.
task re

c.
ta

sk
re

g.
ta

sk

• Runtime information.
• Useless data transfer: cancel decision.

When do we choose to split tasks

9 — WAMTA, Knoxville — Thomas Morin — February 2024



Position of the splitter - trade-off

app wait
dependencies scheduler

data transfer
data fetching worker

submission reg. task queue execute

splitter
re

c.
ta

sk

re
c.

ta
sk

re
g.

ta
sk

subDAG submission

rec. task

When do we choose to split tasks

9 — WAMTA, Knoxville — Thomas Morin — February 2024



Recursive Task Path - Release dependency

R4R3R2R1

R2 R3 R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



Recursive Task Path - Release dependency

R4R3R2

R1 R2 R3 R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



Recursive Task Path - Release dependency

R4R3R2

R1

R2

R3 R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



Recursive Task Path - Release dependency

R4

R3R2R1 R2

R3

R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



Recursive Task Path - Release dependency

R4R3R2R1 R2 R3

R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



Recursive Task Path - Release dependency

R4R3R2R1 R2 R3 R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



Over-synchronization solution

R1 R2 R3 R4

R2 R3 R4R2 R3 R4R3 R4R3 R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



Over-synchronization solution

R1 R2 R3 R4

R2 R3 R4

R2 R3 R4R3 R4R3 R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



Over-synchronization solution

R1 R2 R3 R4R2 R3 R4

R2 R3 R4

R3 R4R3 R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



Over-synchronization solution

R1 R2 R3 R4R2 R3 R4R2 R3 R4

R3 R4

R3 R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



Over-synchronization solution

R1 R2 R3 R4R2 R3 R4R2 R3 R4R3 R4

R3 R4

When do we choose to split tasks

10 — WAMTA, Knoxville — Thomas Morin — February 2024



The tests were run on PlaFRIM’s bora
nodes:

• 2x 18-core Cascade Lake Intel Xeon
Skylake Gold 6240 @ 2.6 GHz

• 192 GB (5.3 GB/core) (@2933 MHz)
• Scheduler : Locality-aware Work-Stealing

(LWS)

Tile sizes choosen :
• 1120 : "big" : the most efficient.
• 280 : "small": no lack of

parallelism.
• 560 : "mid": trade-off.

We split a task if:
• Nready ≤ 4Ncores

• Split efficiency ≥ 50%.

Benchmarks - Introduction - Cholesky Factorization

11 — WAMTA, Knoxville — Thomas Morin — February 2024



The tests were run on PlaFRIM’s bora
nodes:

• 2x 18-core Cascade Lake Intel Xeon
Skylake Gold 6240 @ 2.6 GHz

• 192 GB (5.3 GB/core) (@2933 MHz)
• Scheduler : Locality-aware Work-Stealing

(LWS)

Tile sizes choosen :
• 1120 : "big" : the most efficient.
• 280 : "small": no lack of

parallelism.
• 560 : "mid": trade-off.

We split a task if:
• Nready ≤ 4Ncores

• Split efficiency ≥ 50%.

Benchmarks - Introduction - Cholesky Factorization

11 — WAMTA, Knoxville — Thomas Morin — February 2024



The tests were run on PlaFRIM’s bora
nodes:

• 2x 18-core Cascade Lake Intel Xeon
Skylake Gold 6240 @ 2.6 GHz

• 192 GB (5.3 GB/core) (@2933 MHz)
• Scheduler : Locality-aware Work-Stealing

(LWS)

Tile sizes choosen :
• 1120 : "big" : the most efficient.
• 280 : "small": no lack of

parallelism.
• 560 : "mid": trade-off.

We split a task if:
• Nready ≤ 4Ncores

• Split efficiency ≥ 50%.

Benchmarks - Introduction - Cholesky Factorization

11 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Performance comparison between different Cholesky
Factorization versions.

Benchmarks - Cholesky Factorization

12 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Performance comparison between different Cholesky
Factorization versions.

Benchmarks - Cholesky Factorization

12 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Performance comparison between different Cholesky
Factorization versions.

Benchmarks - Cholesky Factorization

12 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Performance comparison between different Cholesky
Factorization versions.

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

Benchmarks - Cholesky Factorization

12 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Performance comparison between different Cholesky
Factorization versions.

Benchmarks - Cholesky Factorization

12 — WAMTA, Knoxville — Thomas Morin — February 2024



Figure: Flops evolution according to execution time during recursive-splitter Cholesky Factorization
execution, with matrix of size 26880.

Benchmarks - Splitter check - Cholesky Factorization

13 — WAMTA, Knoxville — Thomas Morin — February 2024



• Recursive tasks:
> Insert subgraph at runtime.
> More dynamic DAG.

• Splitting task dynamically brings different questions:
> Which task sould we split.
> When do we choose to split.

Future Work
• Scheduling questions:

> How should we split tasks ?
• Extend current work:

> Heterogeneous platforms.
> Distributed recursive tasks.

Conclusion

14 — WAMTA, Knoxville — Thomas Morin — February 2024



Parallelism Available

Task criticality Completion Time Load balance Efficiency first

Heterogeneous

15 — WAMTA, Knoxville — Thomas Morin — February 2024



dpotrf

6
2

 A
M

D
 +

 2
 A

1
0

0

30000 60000 90000 120000

0

10

20

Matrix order (N)

T
F

lo
p
/s

Version: Tile sizes

Non-Recursive: 1920
Non-Recursive: 2880
Recursive: 5760 / 960 dynamic
Recursive: 5760 / 640 dynamic

Recursive: 2880 / 960 dynamic
Recursive: 2880 / 640 dynamic

Heterogeneous

16 — WAMTA, Knoxville — Thomas Morin — February 2024



Shared data

A: shared 0 & 1

A0: 0 A1: 1

Auto-pruning

R : A

Conclusion

17 — WAMTA, Knoxville — Thomas Morin — February 2024



Shared data

A: shared 0 & 1

A0: 0 A1: 1

Auto-pruning

A0 A1

Conclusion

17 — WAMTA, Knoxville — Thomas Morin — February 2024



Shared data

A: shared 0 & 1

A0: 0 A1: 1

Auto-pruning

Node 0 :

A0

Conclusion

17 — WAMTA, Knoxville — Thomas Morin — February 2024



Shared data

A: shared 0 & 1

A0: 0 A1: 1

Auto-pruning

Node 1 :

A1

Conclusion

17 — WAMTA, Knoxville — Thomas Morin — February 2024


	Introduction
	Current STF limitations

	Recursive Tasks
	Comparison to other recursive models

	Dynamic task graph adaptation
	Which task should be split
	When do we take decisions

	Benchmarks
	Benchmark on homogeneous context

	Conclusion
	Backup

