

# Dynamic Task Graph Adaptation with Recursive Tasks

Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas, <u>Thomas Morin</u>, Samuel Thibault, Pierre-André Wacrenier

February 2024

#### Introduction - Context

#### Task-based Programming

- Motivations:
  - > Portable frameworks.
  - > Exploit complex architectures.
- Applications: Directed Acyclic Graph (DAG).
- Runtime systems: scheduling, data management, communications, ...





#### Introduction - Context

## Task-based Programming

- Motivations:
  - > Portable frameworks.
  - > Exploit complex architectures.
- Applications: Directed Acyclic Graph (DAG).
- Runtime systems: scheduling, data management, communications, ...

## STF: Sequential Task Flow

- Dependencies:
  - > Automatically inferred.
  - > Order of submission.



submit(F, a:RW)
submit(G, a:R, b:RW)
submit(H, a:R, c:RW)
wait\_tasks\_completion()







#### Introduction - Limitations of the STF model

#### Submission

- Overhead: large number of non-ready tasks.
- Bottleneck: sequential insertion.
- Adaptability ? static task graphs.

#### Introduction - Limitations of the STF model

#### Submission

- Overhead: large number of non-ready tasks.
- Bottleneck: sequential insertion.
- Adaptability ? static task graphs.
- $\Rightarrow$  How to create more dynamic task-graphs ?



#### Submission

- Overhead: large number of non-ready tasks.
- Bottleneck: sequential insertion.
- Adaptability ? static task graphs.
- $\Rightarrow$  How to create more dynamic task-graphs ?  $\Rightarrow$  Recursive tasks graphs !

#### Submission

- Overhead: large number of non-ready tasks.
- Bottleneck: sequential insertion.
- Adaptability ? static task graphs.

 $\Rightarrow$  How to create more dynamic task-graphs ?  $\Rightarrow$  Recursive tasks graphs !

## Granularity

- GPUs versus CPUs.
- Lack of parallelism versus Steady State.
- $\Rightarrow$  Steering granularity dynamically ?



#### Submission

- Overhead: large number of non-ready tasks.
- Bottleneck: sequential insertion.
- Adaptability ? static task graphs.

 $\Rightarrow$  How to create more dynamic task-graphs ?  $\Rightarrow$  Recursive tasks graphs !

## Granularity

- GPUs versus CPUs.
- Lack of parallelism versus Steady State.
- $\Rightarrow$  Steering granularity dynamically ?



## Objectives

- Adapt task implementation *at runtime*.
- No spurious synchronization.

- 1. No limit for the hierarchy depth.
- 2. Fine-grained dependencies.
- 3. Transparent data management.



## Objectives

- Adapt task implementation *at runtime*.
- No spurious synchronization.

- 1. No limit for the hierarchy depth.
- 2. Fine-grained dependencies.
- 3. Transparent data management.





## Objectives

- Adapt task implementation *at runtime*.
- No spurious synchronization.

#### Principles

- 1. No limit for the hierarchy depth.
- 2. Fine-grained dependencies.
- 3. Transparent data management.

• Recursive task execution:





## Objectives

- Adapt task implementation *at runtime*.
- No spurious synchronization.

- 1. No limit for the hierarchy depth.
- 2. Fine-grained dependencies.
- 3. Transparent data management.

- Recursive task execution:
  - > Remain regular task.





## Objectives

- Adapt task implementation *at runtime*.
- No spurious synchronization.

- 1. No limit for the hierarchy depth.
- 2. Fine-grained dependencies.
- 3. Transparent data management.

- Recursive task execution:
  - > Remain regular task.
  - > Insert a subgraph: **split**.





## Objectives

- Adapt task implementation *at runtime*.
- No spurious synchronization.

- 1. No limit for the hierarchy depth.
- 2. Fine-grained dependencies.
- 3. Transparent data management.

- Recursive task execution:
  - > Remain regular task.
  - > Insert a subgraph: **split**.



## Objectives

- Adapt task implementation *at runtime*.
- No spurious synchronization.

- 1. No limit for the hierarchy depth.
- 2. Fine-grained dependencies.
- 3. Transparent data management.
  - > Automatic data partition.

- Recursive task execution:
  - > Remain regular task.
  - > Insert a subgraph: **split**.





| ) $\rightarrow$ | Runtime            | Fine-grain<br>Dependencies | Automatic data<br>Partition | Heterogeneity |
|-----------------|--------------------|----------------------------|-----------------------------|---------------|
|                 | TaskFlow<br>PaRSEC |                            |                             |               |
|                 | IRIS               |                            |                             |               |
|                 | OmpSs              |                            |                             |               |
|                 | StarPU             |                            |                             |               |

Ínría



Figure: Barrier between parent tasks

| Runtime  | Fine-grain<br>Dependencies | Automatic data<br>Partition | Heterogeneity |
|----------|----------------------------|-----------------------------|---------------|
| TaskFlow | ×                          |                             |               |
| PaRSEC   | ×                          |                             |               |
| IRIS     | ×                          |                             |               |
| OmpSs    |                            |                             |               |
| StarPU   |                            |                             |               |

Ínría\_



Figure: Barrier between parent tasks



Figure: Fine-grain dependencies

| Runtime  | Fine-grain<br>Dependencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Automatic data<br>Partition | Heterogeneity |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|
| TaskFlow | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |               |
| PaRSEC   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |               |
| IRIS     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |               |
| OmpSs    | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |               |
| StarPU   | <ul> <li>Image: A second s</li></ul> |                             |               |

Ínnía-



Figure: Barrier between parent tasks



Figure: Fine-grain dependencies

| Runtime  | Fine-grain<br>Dependencies | Automatic data<br>Partition | Heterogeneity |
|----------|----------------------------|-----------------------------|---------------|
| TaskFlow | ×                          | ×                           |               |
| PaRSEC   | ×                          | ×                           |               |
| IRIS     | ×                          | ✓                           |               |
| OmpSs    | ✓                          |                             |               |
| StarPU   | 1                          | ✓                           |               |



Figure: Barrier between parent tasks



Figure: Fine-grain dependencies

| Runtime  | Fine-grain<br>Dependencies | Automatic data<br>Partition | Heterogeneity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|----------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TaskFlow | ×                          | ×                           | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PaRSEC   | ×                          | ×                           | <ul> <li>Image: A second s</li></ul> |
| IRIS     | ×                          | ✓                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OmpSs    | ✓                          |                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| StarPU   | 1                          | $\checkmark$                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



Dynamic task graph adaptation : splitting tasks

Which task should we split?

When do we choose to split task?



Dynamic task graph adaptation : splitting tasks

Which task should we split?

Efficiency VS Completion Time

When do we choose to split task?



Dynamic task graph adaptation : splitting tasks

Which task should we split?

Efficiency VS Completion Time

When do we choose to split task?

Submission, execution, ...



## Exploit informations



## Exploit informations

1. Split efficiency.



## **Exploit** informations

- 1. Split efficiency.
- 2. Current parallelism on Runtime System.

Innin

## **Exploit** informations

## 1. Split efficiency.



#### **Exploit** informations

## 1. Split efficiency.

2. Current parallelism on Runtime System.







## 1. Split efficiency.





# Exploit informations

## 1. Split efficiency.





## Exploit informations

## 1. Split efficiency.



# Exploit informations

## 1. Split efficiency.



#### **Exploit** informations

- 1. Split efficiency.
- 2. Current parallelism on Runtime System.

Innin

#### **Exploit** informations

- 1. Split efficiency.
- 2. Current parallelism on Runtime System.







- 1. Split efficiency.
- 2. Current parallelism on Runtime System.














| Task life path |                           |           |                                      |                |
|----------------|---------------------------|-----------|--------------------------------------|----------------|
| app            | wait rele<br>dependencies | scheduler | queue data transfer<br>data fetching | execute worker |
|                |                           |           |                                      |                |
|                |                           |           |                                      |                |
|                |                           |           |                                      |                |
|                |                           |           |                                      | )              |



min





#### Position of the splitter - at submission reg. task release queue data transfer execute wait app scheduler worker dependencies data fetching reg. rec. task task splitter rec. task • Easy. Lack of information.





naio









### Position of the splitter - trade-off





























Benchmarks - Introduction - Cholesky Factorization

The tests were run on PlaFRIM's bora nodes:

- 2x 18-core Cascade Lake Intel Xeon Skylake Gold 6240 @ 2.6 GHz
- 192 GB (5.3 GB/core) (@2933 MHz)
- Scheduler : Locality-aware Work-Stealing (LWS)



Benchmarks - Introduction - Cholesky Factorization

# The tests were run on PlaFRIM's bora nodes:

- 2x 18-core Cascade Lake Intel Xeon Skylake Gold 6240 @ 2.6 GHz
- 192 GB (5.3 GB/core) (@2933 MHz)
- Scheduler : Locality-aware Work-Stealing (LWS)

Tile sizes choosen :

- 1120 : "big" : the most efficient.
- 280 : "small": no lack of parallelism.
- 560 : "mid": trade-off.



Benchmarks - Introduction - Cholesky Factorization

# The tests were run on PlaFRIM's bora nodes:

- 2x 18-core Cascade Lake Intel Xeon Skylake Gold 6240 @ 2.6 GHz
- 192 GB (5.3 GB/core) (@2933 MHz)
- Scheduler : Locality-aware Work-Stealing (LWS)

Tile sizes choosen :

- 1120 : "big" : the most efficient.
- 280 : "small": no lack of parallelism.
- 560 : "mid": trade-off.

### We split a task if:

- $N_{ready} \leq 4N_{cores}$
- Split efficiency  $\geq$  50%.





Figure: Performance comparison between different Cholesky Factorization versions.







Figure: Performance comparison between different Cholesky Factorization versions.







Figure: Performance comparison between different Cholesky Factorization versions.





| ? | ? | ? | ? |
|---|---|---|---|
| ? | ? | ? | ? |
| ? | ? | ? | ? |
| ? | ? | ? | ? |

Figure: Performance comparison between different Cholesky Factorization versions.





Figure: Performance comparison between different Cholesky Factorization versions.



### Benchmarks - Splitter check - Cholesky Factorization



Figure: Flops evolution according to execution time during recursive-splitter Cholesky Factorization execution, with matrix of size 26880.



## Conclusion

- Recursive tasks:
  - > Insert subgraph at runtime.
  - > More dynamic DAG.
- Splitting task dynamically brings different questions:
  - > Which task sould we split.
  - > When do we choose to split.

### Future Work

- Scheduling questions:
  - > How should we split tasks ?
- Extend current work:
  - > Heterogeneous platforms.
  - > Distributed recursive tasks.



Heterogeneous



Innia

### Heterogeneous



Ínría


Innin -

17 — WAMTA, Knoxville — Thomas Morin — February 2024





17 — WAMTA, Knoxville — Thomas Morin — February 2024



Innin-



Innin-