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Task-based Programming
• Motivations:

> Portable frameworks.
> Exploit complex architectures.

• Applications: Directed Acyclic Graph (DAG).
• Runtime systems: scheduling, data management,

communications, . . .

STF: Sequential Task Flow
• Dependencies:

> Automatically inferred.
> Order of submission.

F(a)
G(a, b)
H(a, c)

submit (F, a:RW)
submit (G, a:R, b:RW)
submit (H, a:R, c:RW)
wait_tasks_completion ()

F

G

H
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Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ? ⇒ Recursive tasks graphs !

Granularity
• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?

Introduction - Limitations of the STF model
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Objectives
• Adapt task implementation at

runtime.
• No spurious synchronization.

Principles
1. No limit for the hierarchy depth.
2. Fine-grained dependencies.
3. Transparent data management.

> Automatic data partition.

• Recursive task execution:

> Remain regular task.
> Insert a subgraph: split.
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Recursive Tasks in StarPU
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Figure: Barrier between
parent tasks

Figure: Fine-grain
dependencies

Runtime Fine-grain Automatic data HeterogeneityDependencies Partition

TaskFlow

✗ ✗ ✓

PaRSEC

✗ ✗ ✓

IRIS

✗ ✓ ✓

OmpSs

✓ ✗

StarPU

✓ ✓ ✓

Recursive tasks - State of the Art
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Which task should we split?

Efficiency VS Completion Time

When do we choose to split task?

Submission, execution, ...

Dynamic task graph adaptation : splitting tasks

6 — WAMTA, Knoxville — Thomas Morin — February 2024



Which task should we split?

Efficiency VS Completion Time

When do we choose to split task?

Submission, execution, ...

Dynamic task graph adaptation : splitting tasks

6 — WAMTA, Knoxville — Thomas Morin — February 2024



Which task should we split?

Efficiency VS Completion Time

When do we choose to split task?

Submission, execution, ...

Dynamic task graph adaptation : splitting tasks

6 — WAMTA, Knoxville — Thomas Morin — February 2024



Exploit informations

1. Split efficiency.
2. Current parallelism on Runtime System.

Split the task - Gantt chart

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.
Cumulated time: 8 units.

Completion Time versus Efficiency

Which task do we split
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Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 1: Steady State

time

worker 0

worker 1

worker 2

worker 3

Which task do we split
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Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 2

time

worker 0

worker 1

worker 2

worker 3

+ 0 ready tasks

Which task do we split
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Exploit informations
1. Split efficiency.

2. Current parallelism on Runtime System.

Situation 2 : Starvation
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Task life path

app wait
dependencies scheduler

data transfer
data fetching worker

submission release queue execute

When do we choose to split tasks

9 — WAMTA, Knoxville — Thomas Morin — February 2024



Adding the splitter

app wait
dependencies scheduler

data transfer
data fetching worker

reg. task release queue execute

splitterrec. task

rec. task

reg. task

When do we choose to split tasks
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Position of the splitter - at submission

app wait
dependencies scheduler

data transfer
data fetching worker

reg. task release queue execute

splitter

rec.
task

reg.
task

rec. task

• Easy.

• Lack of information.

When do we choose to split tasks
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Position of the splitter - Execution

app wait
dependencies scheduler

data transfer
data fetching worker

submission release queue execute

splitter

rec.
task re

c.
ta

sk
re

g.
ta

sk

• Runtime information.

• Useless data transfer: cancel decision.
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Position of the splitter - trade-off

app wait
dependencies scheduler

data transfer
data fetching worker

submission reg. task queue execute

splitter
re

c.
ta

sk

re
c.

ta
sk

re
g.

ta
sk

subDAG submission

rec. task

When do we choose to split tasks
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Recursive Task Path - Release dependency

R4R3R2R1

R2 R3 R4

When do we choose to split tasks
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Recursive Task Path - Release dependency

R4R3R2

R1 R2 R3 R4
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Recursive Task Path - Release dependency
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Over-synchronization solution

R1 R2 R3 R4

R2 R3 R4R2 R3 R4R3 R4R3 R4

When do we choose to split tasks
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Over-synchronization solution

R1 R2 R3 R4R2 R3 R4R2 R3 R4R3 R4

R3 R4
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The tests were run on PlaFRIM’s bora
nodes:

• 2x 18-core Cascade Lake Intel Xeon
Skylake Gold 6240 @ 2.6 GHz

• 192 GB (5.3 GB/core) (@2933 MHz)
• Scheduler : Locality-aware Work-Stealing

(LWS)

Tile sizes choosen :
• 1120 : "big" : the most efficient.
• 280 : "small": no lack of

parallelism.
• 560 : "mid": trade-off.

We split a task if:
• Nready ≤ 4Ncores

• Split efficiency ≥ 50%.

Benchmarks - Introduction - Cholesky Factorization
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Figure: Performance comparison between different Cholesky
Factorization versions.

Benchmarks - Cholesky Factorization
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Figure: Flops evolution according to execution time during recursive-splitter Cholesky Factorization
execution, with matrix of size 26880.

Benchmarks - Splitter check - Cholesky Factorization
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• Recursive tasks:
> Insert subgraph at runtime.
> More dynamic DAG.

• Splitting task dynamically brings different questions:
> Which task sould we split.
> When do we choose to split.

Future Work
• Scheduling questions:

> How should we split tasks ?
• Extend current work:

> Heterogeneous platforms.
> Distributed recursive tasks.

Conclusion
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Parallelism Available

Task criticality Completion Time Load balance Efficiency first

Heterogeneous
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dpotrf
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Version: Tile sizes

Non-Recursive: 1920
Non-Recursive: 2880
Recursive: 5760 / 960 dynamic
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Recursive: 2880 / 960 dynamic
Recursive: 2880 / 640 dynamic

Heterogeneous
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Shared data

A: shared 0 & 1

A0: 0 A1: 1

Auto-pruning

R : A

Conclusion
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