High-Performance Sparse Tensor Computations

Somesh Singh

Post-doctoral Researcher Team ROMA, LIP

December 07, 2023

Professional History

PhD (+ Master's) [July 2014 – June 2021] | IIT Madras, India

Scalable and performant graph processing on GPU using approximate computing

Post-doctoral researcher [September 2021 – Present] | Team ROMA at LIP, ENS Lyon

- · High-performance sparse matrix and tensor computations
- Hashing-based methods

Tensors: A Recap

Tensors are multi-dimensional arrays

1D Tensor / Vector

2D Tensor / Matrix

3D Tensor / Cube

4D Tensor

5D Tensor

A d-dimensional sparse tensor corresponds to a special class of hypergraphs

Two Operations on Sparse Tensors

D Querying for nonzeros in tensors

• Hyperedge queries in hypergraphs

• SpGETT: Sparse Tensor–Sparse Tensor Multiplication

Hyperedge Queries in Hypergraphs

The problem

- **Given**: A *d*-dimensional sparse tensor T
 - **Goal**: Answer queries of the form: "Is $\mathcal{T}[i_1, \ldots, i_d]$ zero or nonzero?"

Motivation

An algorithm for the **decomposition of (sparse) tensors** [Kolda, Hong 2020][§] in which this problem appears as a subproblem

- · Sample the zeros and nonzeros of the tensor
- For sampling zeros: generate a random set of indices, and check those positions in the tensor for nonzeros

[§] T. G. Kolda and D. Hong, "Stochastic gradients for large-scale tensor decomposition," SIAM Journal on Mathematics of Data Science 2(2020)

Hyperedge Queries in Hypergraphs

Characteristics of a desirable solution

- O(d) query response time
- Small memory overhead
- Fast preprocessing

Our approach

Space-efficient hashing-based method with worst-case O(1) lookup

FKSlean: The proposed method

- All the nonzeros are available at the start
- There are no duplicates
- Perfect hashing of a static set of nonzeros

FKSlean

• A two-level structure

• First level hash function:

 $h(\mathbf{k}, \mathbf{x}, \boldsymbol{p}, n) \coloneqq (\mathbf{k}^T \mathbf{x} \mod \boldsymbol{p}) \mod n$

- Second level hash function: $h(\mathbf{k}_i, \mathbf{x}, p, 2b_i^2) := (\mathbf{k}_i^T \mathbf{x} \mod p) \mod 2b_i^2$
- k, k_i: random d-tuples
- n: number of nonzeros in tensor $\mathcal T$
- *p*: prime number > *n*

b_i: number of nonzeros mapped to bucket B_i

FKSlean data structure

J. Bertrand, F. Dufossé, **S. Singh** and B. Uçar, "Algorithms and Data Structures for Hyperedge Queries", ACM Journal of Experimental Algorithmics (JEA), vol. 27, no. 1, Article 1.13, 23 pages, 2022 [ACM Results Reproduced Badge]

FKSlean Results

- · Guaranteed constant time lookup per query in the worst-case
- Construction time is linear in the number of nonzeros, in expectation
- Total storage space less than 5n
- Fastest among all the competitors, including the state-of-the-art PTHash

PARFKSLEAN: Parallel FKSlean

PARFKSLEAN data structure

- Parallelizes the construction and the query phase of FKSlean
- PARFKSLEAN retains the properties of FKSlean
- Parallel construction proceeds in two steps
 - 1: setup fksOffset, in parallel
 - 2: populate fksStorage, in parallel

PARFKSLEAN Results

Construction of PARFKSLEAN is always faster than PTHash for all thread counts

Scalability of Construction of PARFKSLEAN

PARFKSLEAN exhibits good parallel scaling

Query Response Time of PARFKSLEAN

		PTHash			
Tensor	#Threads	-PC	-DD	-EF	PARFKSLEAN
nell-2	2	2.01	1.64	2.10	0.97
	4	1.01	0.95	1.06	0.53
	8	0.46	0.49	0.54	0.27
	16	0.25	0.27	0.29	0.15
	32	0.14	0.15	0.16	0.11
	64	0.08	0.09	0.11	0.07
- 70	2	2.51	2.04	2.20	1.07
4			•		
ic,					
Ħ	64	0.11	0.09	0.09	0.08
4d	2	2.30	2.02	2.25	1.11
-sn					
cio			:		
deli	64	0.10	0.09	0.15	0.08
			:		
ell-			•		
	64	0.11	0.10	0.08	0.08

Execution time (in seconds) for 10⁷ queries on four large tensors

PARFKSLEAN is faster than or comparable to PTHash for all thread counts

Conclusions (Part-I)

- We propose FKSlean and its parallel version PARFKSLEAN for answering hyperedge queries
- The construction phase of PARFKSLEAN exhibits good parallel scaling
- FKSlean and PARFKSLEAN both outperform the state-of-the-art in construction and query response time

Sparse Tensor Contraction (SpGETT)

- Tensor contraction is a higher-dimensional analog of matrix-matrix multiplication
- Multiplication of two matrices: $\mathbf{A} \in \mathbb{R}^{I \times K}$ and $\mathbf{B} \in \mathbb{R}^{K \times J}$

Sparse Tensor Contraction (SpGETT)

• Contraction of two tensors: $A \in \mathbb{R}^{I \times J \times P \times Q}$ and $B \in \mathbb{R}^{P \times Q \times K \times L}$ with p,q as contraction indices

Gustavson's algorithm for SpGEMM

- Row-row formulation of SpGEMM
- $C_{i,:} = \sum_{k} A_{ik} \cdot B_{k,:}$

Gustavson's-like formulation for SpGETT

• $C = AB | A \in \mathbb{R}^{I \times J \times P \times Q}, B \in \mathbb{R}^{P \times Q \times K \times L} | \text{Contraction dimensions: } P, Q$

- Row-wise SpGETT
- $\mathcal{C}_{i,j,:,:} = \sum_{pq} \mathcal{A}_{ijpq} \cdot \mathcal{B}_{p,q,:,:}$

FKSCuckoo: Dynamic perfect hashing

- Allows dynamic insertions
- There can be multiple items that share the same hashing indices
- Perfect hashing of a dynamic set of nonzeros

FKSCuckoo

к **k**₀ **k**₁ **k**₂ id_m . slots hashing • id. id. id_w id_g

A two-level structure

- $n_h \leqslant d$ hashing indices
- First level hash function:
 h(k, x, p, n) := (k^Tx mod p) mod n
- Second level: Apply cuckoo hashing
- Items with the same hashing indices added to its auxiliary list
- k: random n_h-tuple
- n: number of nonzeros in tensor T
- *p*: prime number > *n*
- *b_i*: number of nonzeros mapped to bucket *B_i*

id

auxiliary list

 B_0 B_1

 B_{n-1}

Cuckoo Hashing

Cuckoo hashing is a perfect hashing approach with O(1) lookup time in the worst case

- Construct a bipartite graph on items and slots
- The slots where an item, **x**, can be placed:
 - $h_1(\mathbf{X}) := (\mathbf{k}_1^T \mathbf{X} \mod p) \mod s$ $h_2(\mathbf{X}) := (\mathbf{k}_2^T \mathbf{X} \mod p) \mod s$
- Find a perfect matching of items to slots, using a deterministic approach

Cuckoo Hashing

Cuckoo hashing is a perfect hashing approach with O(1) lookup time in the worst case

- Construct a bipartite graph on items and slots
- The slots where an item, **x**, can be placed:

$$h_1(\mathbf{X}) := (\mathbf{k}_1^T \mathbf{X} \mod p) \mod s$$
$$h_2(\mathbf{X}) := (\mathbf{k}_1^T \mathbf{X} \mod p) \mod s$$

• Find a perfect matching of items to slots, using a deterministic approach

SpGETT using FKSCuckoo

- Two 4D tensors: $\mathcal{A} \in \mathbb{R}^{I,J,P,Q}$ and $\mathcal{B} \in \mathbb{R}^{P,Q,K,L}$
- Tensor contraction $C = A \times B$ along dimensions P, Q
- 1. Create hash data structures for A and B: H_A and H_B respectively
 - For $\mathcal{H}_{\mathcal{A}}$, hash \mathcal{A} using (i,j)
 - For $\mathcal{H}_{\mathcal{B}}$, hash \mathcal{B} using (p,q)

SpGETT using FKSCuckoo

- Two 4D tensors: $\mathcal{A} \in \mathbb{R}^{I,J,P,Q}$ and $\mathcal{B} \in \mathbb{R}^{P,Q,K,L}$
- Tensor contraction $C = A \times B$ along dimensions P, Q
- 2. To generate a slice C(i,j, :, :), pick a slot in $\mathcal{H}_{\mathcal{A}}$ for (i,j)
 - Pick each (p,q) in the auxiliary list of (i,j) in $\mathcal{H}_{\mathcal{A}}$
 - Find the (p,q) in $\mathcal{H}_\mathcal{B}$
 - Go over the nonzeros in the auxiliary list of (p,q) in $\mathcal{H}_{\mathcal{B}}$
 - Multiply and accumulate the partial products in $\mathcal{H}_{\textit{SPA}}$ and write to $\mathcal C$ when the entire slice is populated

FKSCuckoo Results

- Operation considered for evaluation: $C = AA^T$
- Baseline: Sparta, the state-of-the-art for SpGETT
- Sequential execution: Ours is 1.01 \times to 1.20 \times faster than Sparta on real-world tensors from FROSTT
- Parallel execution: Ours is 1.08× to 1.25× faster than Sparta on real-world tensors from FROSTT across thread counts of {16, 32, 48, 64, 80, 96}

Conclusions

- We propose a hashing-based method for SpGETT
- Our method outperforms the state-of-the-art both in the sequential and parallel setting on real-world tensors
- Hashing-based methods for sparse tensor computations are promising

Conclusions

- We propose a hashing-based method for SpGETT
- Our method outperforms the state-of-the-art both in the sequential and parallel setting on real-world tensors
- Hashing-based methods for sparse tensor computations are promising

Thank You

Backup Slides

Input Tensors

Tensor	n					
chicago_crime (T-1)	4	$6,\!186\times24\times77\times32$	5,330,673			
vast-2015-mc1-3d (T-2)	3	$165,427 \times 11,374 \times 2$	26,021,854			
vast-2015-mc1-5d (T-3)	5	$165,\!427\times11,\!374\times2\times100\times$	26,021,945			
		89				
enron (T-4)	4	6,066 $ imes$ 5,699 $ imes$ 244,268 $ imes$	54,202,099			
		1,176				
nell-2 (T-5)	3	$12,092 \times 9,184 \times 28,818$	76,879,419			
flickr-3d (T-6)	3	319,686 × 28,153,045 ×	112,890,310			
		1,607,191				
flickr-4d (T-7)	4	319,686 × 28,153,045 ×	112,890,310			
		1,607,191 × 731				
delicious-3d (T-8)	3	532,924 × 17,262,471 ×	140,126,181			
		2,480,308				
delicious-4d (T-9)	4	532,924 × 17,262,471 ×	140,126,181			
		2,480,308 × 1,443				
nell-1 (T-10)	3	2,902,330 × 2,143,368 ×	143,599,552			
		25,495,389				
Input tensors from FROSTT dataset						

27