
High-Performance Sparse Tensor Computations

Somesh Singh
Post-doctoral Researcher

Team ROMA, LIP

December 07, 2023

Professional History

PhD (+ Master’s) [July 2014 – June 2021]
ffl

ffl IIT Madras, India

Scalable and performant graph processing on GPU using approximate computing

Post-doctoral researcher [September 2021 – Present]
ffl

ffl Team ROMA at LIP, ENS Lyon

‚ High-performance sparse matrix and tensor computations
‚ Hashing-based methods

2

Tensors: A Recap
‚ Tensors are multi-dimensional arrays

1 0 -5 3 2

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

9

1 0 -5 3 2

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

9

1 0 -5 3 2

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

9
1 0 -5 3 2

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

2 0 0

1 8 -4

-5 0 -1

9

‚ A d-dimensional sparse tensor corresponds to a special class of hypergraphs

Hypergraph3D Tensor

1D Tensor / Vector 2D Tensor / Matrix 3D Tensor / Cube 4D Tensor 5D Tensor

Graphics Source: Google Images 3

Two Operations on Sparse Tensors

1 Querying for nonzeros in tensors
‚ Hyperedge queries in hypergraphs

2 Tensor contraction
‚ SpGETT: Sparse Tensor–Sparse Tensor Multiplication

4

Hyperedge Queries in Hypergraphs
The problem

Given: A d-dimensional sparse tensor T
Goal: Answer queries of the form: “Is T ri1, . . . , id s zero or nonzero?”

Motivation

An algorithm for the decomposition of (sparse) tensors [Kolda, Hong 2020]§

in which this problem appears as a subproblem

‚ Sample the zeros and nonzeros of the tensor

‚ For sampling zeros: generate a random set of indices, and
check those positions in the tensor for nonzeros

§ T. G. Kolda and D. Hong, “Stochastic gradients for large-scale tensor decomposition,” SIAM Journal on Mathematics of Data Science 2(2020) 5

Hyperedge Queries in Hypergraphs
Characteristics of a desirable solution

‚ O(d) query response time

‚ Small memory overhead

‚ Fast preprocessing

Our approach

Space-efficient hashing-based method with worst-case Op1q lookup

6

FKSlean: The proposed method

‚ All the nonzeros are available at the start

‚ There are no duplicates

‚ Perfect hashing of a static set of nonzeros

7

FKSlean

<latexit sha1_base64="UbHemAIZb6vBpvOhZddYmCq0VJQ=">AAAFqnicpVTLbtNAFL0NGEp5pWXJJiJCYlFFdoGGFQpiAysCIm1RG1V+jFMrfskzhlRRfoUt/BJ/AH/BuTdOG9ImvMayfefMPfdxZmwvjyNtbPvbWu3KVeva9fUbGzdv3b5zt765taezsvBVz8/irDjwXK3iKFU9E5lYHeSFchMvVvve8CWv739UhY6y9L05zVU/cQdpFEa+awAd17eOjBoZHY7DoX4ThlqZyXG9abdsGY2LhlMZzc7zDvHoZpu1Dh1RQBn5VFJCilIysGNySeM6JIdsyoH1aQysgBXJuqIJbYBbwkvBwwU6xHOA2WGFpphzTC1sH1li3AWYDXoITga/AjZna8h6KZEZXRZ7LDG5tlO8vSpWAtTQCdDf8Waef8rjXgyF9Ex6iNBTLgh351dRSlGFK2/MdWUQIQfGdoD1ArYvzJnODeFo6Z21dWX9u3gyynO/8i3pR1VlACSUStScplN9PXBieE8wL1C/J5ZNLdzbiMjWDnqZ2bvUrvZxWdRAKhuKKlqqjxGXK+S6LsvjnEVv09O5rE8k06r94cicNZI9SVaesBSeXEFQncxFbiS7w3zu6JP0lMh+M2cM3Md7IFrxKe8Lxv2N5Av4GwWa4E/+QUeOEVyiYRv7cq7b4zPbgT3TcFlXL0S3Zb0snhH2m30DHuoegz+prlVZuv+ZpXueBf8sZ/EPddHY22k5uy37LX5er2k61uk+PaBHUKVNHXqFmD1kHtFn+kJfrW3rnfXBOpy61tYqzj36ZVjBTwesH4g=</latexit>

fksO↵set

<latexit sha1_base64="JXKDD8sQt5Tci+NDYTbwrZ+BR3c=">AAAFq3icpVTLbtNAFL0NGEqhkNIlG4sIiQVEdoGGZVA3sEtV0lY0UfFjEqz4hT2GRlE+gzVb+CT+AP6hC869cdqQNuFly/adM/fcx5nxuGkY5Nqyvq1Urlw1rl1fvbF289b67TvVjbv7eVJknmp7SZhkh66TqzCIVVsHOlSHaaacyA3VgTvY4fmDDyrLgyR+rYep6kZOPw56gedoQMfVzY5WJzrvjXqDfE8nmdNX4+NqzapbcpkXDbs0as2d0/dvP4XrrWSj0qQO+ZSQRwVFpCgmDTskh3LcR2STRSmwLo2AZbACmVc0pjVwC3gpeDhAB3j3MToq0RhjjpkL20OWEE8GpkkPwEngl8HmbKbMFxKZ0UWxRxKTaxvi65axIqCa3gH9HW/q+ac87kVTj55LDwF6SgXh7rwySiGqcOXmTFcaEVJgbPuYz2B7wpzqbAonl95ZW0fmv4snozz2St+CfpRV+kB6Uoma0XSirwtOCO8xxhnqd8WyqI7nESKytYVepvY2Ncp1XBTVl8oGokou1YeIyxVyXZflsc+iN+jZTNankmnZ+nBkzhrImkRLd1gMT67AL3fmPDeQ1WE+d/RReopkvZkzAu7h2xeteJd3BeP+TuQP+BsFauCP/0FHjuFfomED63Ku25Mz24Y91XBRVy9Et0W9zO8R9pv+Ay7qHoE/Lu9lWVr/maV1ngVnlj1/Ql009rfq9nbd2sXh9Yom1yrdo/v0EKo0qEkvEbONzEP6TF/oq/HY2DPeGJ2Ja2Wl5GzSL5ehfgKoByKg</latexit>

fksStorage

idB0

B1

Bn-1

id/kid
0

d-1

2 22-1×
id0 id1

id

id1id0 id2

1

r

k1k0 kr

k

0

2 32-1×0

FKSlean data structure

‚ A two-level structure

‚ First level hash function:
hpk, x, p, nq :“ pkT x mod pq mod n

‚ Second level hash function:
hpki , x, p, 2b2

i q :“ pki
T x mod pq mod 2b2

i

‚ k, ki : random d-tuples

‚ n: number of nonzeros in tensor T
‚ p: prime number ą n

‚ bi : number of nonzeros mapped to bucket Bi

J. Bertrand, F. Dufossé, S. Singh and B. Uçar, “Algorithms and Data Structures for Hyperedge Queries”, ACM Journal of Experimental Algorithmics (JEA),
vol. 27, no. 1, Article 1.13, 23 pages, 2022 [ACM Results Reproduced Badge]

8

FKSlean Results
‚ Guaranteed constant time lookup per query in the worst-case

‚ Construction time is linear in the number of nonzeros, in expectation

‚ Total storage space less than 5n

‚ Fastest among all the competitors, including the state-of-the-art PTHash

10-2

10-1

100

101

102

103

106 5x106 107 5x107 108 5x108

C
o
n
st

ru
ct

io
n
 T

im
e
 [

s]

n

uPTHash(3)
uPTHash(2)

uPTHash(1)
FKSlean

3ˆ faster than PTHash

2.3ˆ faster than PTHash

Queries: 107

 0

 1

 2

 3

 4

 5

 6

 7

 8

106 5x106 107 5x107 108 5x108

Q
u
e
ry

 R
e
sp

o
n
se

 T
im

e
 [

s]

n

uPTHash(3)
uPTHash(1)

uPTHash(2)
FKSlean

(Lower is better)
9

PARFKSLEAN: Parallel FKSlean

<latexit sha1_base64="UbHemAIZb6vBpvOhZddYmCq0VJQ=">AAAFqnicpVTLbtNAFL0NGEp5pWXJJiJCYlFFdoGGFQpiAysCIm1RG1V+jFMrfskzhlRRfoUt/BJ/AH/BuTdOG9ImvMayfefMPfdxZmwvjyNtbPvbWu3KVeva9fUbGzdv3b5zt765taezsvBVz8/irDjwXK3iKFU9E5lYHeSFchMvVvve8CWv739UhY6y9L05zVU/cQdpFEa+awAd17eOjBoZHY7DoX4ThlqZyXG9abdsGY2LhlMZzc7zDvHoZpu1Dh1RQBn5VFJCilIysGNySeM6JIdsyoH1aQysgBXJuqIJbYBbwkvBwwU6xHOA2WGFpphzTC1sH1li3AWYDXoITga/AjZna8h6KZEZXRZ7LDG5tlO8vSpWAtTQCdDf8Waef8rjXgyF9Ex6iNBTLgh351dRSlGFK2/MdWUQIQfGdoD1ArYvzJnODeFo6Z21dWX9u3gyynO/8i3pR1VlACSUStScplN9PXBieE8wL1C/J5ZNLdzbiMjWDnqZ2bvUrvZxWdRAKhuKKlqqjxGXK+S6LsvjnEVv09O5rE8k06r94cicNZI9SVaesBSeXEFQncxFbiS7w3zu6JP0lMh+M2cM3Md7IFrxKe8Lxv2N5Av4GwWa4E/+QUeOEVyiYRv7cq7b4zPbgT3TcFlXL0S3Zb0snhH2m30DHuoegz+prlVZuv+ZpXueBf8sZ/EPddHY22k5uy37LX5er2k61uk+PaBHUKVNHXqFmD1kHtFn+kJfrW3rnfXBOpy61tYqzj36ZVjBTwesH4g=</latexit>

fksO↵set

<latexit sha1_base64="JXKDD8sQt5Tci+NDYTbwrZ+BR3c=">AAAFq3icpVTLbtNAFL0NGEqhkNIlG4sIiQVEdoGGZVA3sEtV0lY0UfFjEqz4hT2GRlE+gzVb+CT+AP6hC869cdqQNuFly/adM/fcx5nxuGkY5Nqyvq1Urlw1rl1fvbF289b67TvVjbv7eVJknmp7SZhkh66TqzCIVVsHOlSHaaacyA3VgTvY4fmDDyrLgyR+rYep6kZOPw56gedoQMfVzY5WJzrvjXqDfE8nmdNX4+NqzapbcpkXDbs0as2d0/dvP4XrrWSj0qQO+ZSQRwVFpCgmDTskh3LcR2STRSmwLo2AZbACmVc0pjVwC3gpeDhAB3j3MToq0RhjjpkL20OWEE8GpkkPwEngl8HmbKbMFxKZ0UWxRxKTaxvi65axIqCa3gH9HW/q+ac87kVTj55LDwF6SgXh7rwySiGqcOXmTFcaEVJgbPuYz2B7wpzqbAonl95ZW0fmv4snozz2St+CfpRV+kB6Uoma0XSirwtOCO8xxhnqd8WyqI7nESKytYVepvY2Ncp1XBTVl8oGokou1YeIyxVyXZflsc+iN+jZTNankmnZ+nBkzhrImkRLd1gMT67AL3fmPDeQ1WE+d/RReopkvZkzAu7h2xeteJd3BeP+TuQP+BsFauCP/0FHjuFfomED63Ku25Mz24Y91XBRVy9Et0W9zO8R9pv+Ay7qHoE/Lu9lWVr/maV1ngVnlj1/Ql009rfq9nbd2sXh9Yom1yrdo/v0EKo0qEkvEbONzEP6TF/oq/HY2DPeGJ2Ja2Wl5GzSL5ehfgKoByKg</latexit>

fksStorage

idB0

B1

Bn-1

id/kid
0

d-1

2 22-1×
id0 id1

id

id1id0 id2

1

r

k1k0 kr

k

0

2 32-1×0

PARFKSLEAN data structure

‚ Parallelizes the construction and the query phase
of FKSlean

‚ PARFKSLEAN retains the properties of FKSlean

‚ Parallel construction proceeds in two steps

1: setup fksOffset, in parallel

2: populate fksStorage, in parallel

S. Singh and B. Uçar, “An Efficient Parallel Implementation of a Perfect Hashing Method for Hypergraphs”, GrAPL Workshop (IPDPSW), 2022 10

PARFKSLEAN Results

 0

 0.5

 1

 1.5

 2

T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10

N
or

m
al

iz
ed

 c
on

st
ru

ct
io

n
 t

im
e

parFKSLean PTHash-PC PTHash-DD PTHash-EF
0.

60
 s

3.
37

 s

3.
96

 s

7.
27

 s

11
.9

1
s

18
.3

8
s

19
.9

8
s

22
.4

0
s

22
.6

6
s

20
.8

9
s

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10

N
or

m
al

iz
ed

 c
on

st
ru

ct
io

n
 t

im
e

parFKSLean PTHash-PC PTHash-DD PTHash-EF

0.
07

 s

0.
33

 s

0.
33

 s

0.
72

 s

0.
99

 s

1.
47

 s

1.
47

 s

1.
79

 s

1.
81

 s

1.
90

 s # threads = 32

threads = 64

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10

N
or

m
al

iz
ed

 c
on

st
ru

ct
io

n
 t

im
e

parFKSLean PTHash-PC PTHash-DD PTHash-EF

0.
05

 s

0.
21

 s

0.
22

 s

0.
48

 s

0.
66

 s

1.
01

 s

1.
01

 s

1.
25

 s

1.
25

 s

1.
28

 s

Construction of PARFKSLEAN is always faster than PTHash for all thread counts
11

Scalability of Construction of PARFKSLEAN

 0

 5

 10

 15

 20

 25

 30

2 4 8 16 32 64

sp
e
e
d

u
p

threads

parFKSLean
PTHash-PC
PTHash-DD
PTHash-EF

nell-2

 0

 5

 10

 15

 20

 25

 30

2 4 8 16 32 64

sp
e
e
d

u
p

threads

parFKSLean
PTHash-PC
PTHash-DD
PTHash-EF

flickr-4d

 0

 5

 10

 15

 20

 25

 30

2 4 8 16 32 64

sp
e
e
d

u
p

threads

parFKSLean
PTHash-PC
PTHash-DD
PTHash-EF

delicious-4d

 0

 5

 10

 15

 20

 25

 30

2 4 8 16 32 64

sp
e
e
d

u
p

threads

parFKSLean
PTHash-PC
PTHash-DD
PTHash-EF

nell-1

PARFKSLEAN exhibits good parallel scaling
12

Query Response Time of PARFKSLEAN
PTHash

Tensor #Threads -PC -DD -EF PARFKSLEAN

ne
ll-

2

2 2.01 1.64 2.10 0.97
4 1.01 0.95 1.06 0.53
8 0.46 0.49 0.54 0.27

16 0.25 0.27 0.29 0.15
32 0.14 0.15 0.16 0.11
64 0.08 0.09 0.11 0.07

fli
ck

r-
4d

2 2.51 2.04 2.20 1.07
.
.
.

64 0.11 0.09 0.09 0.08

de
lic

io
us

-4
d 2 2.30 2.02 2.25 1.11

.

.

.
64 0.10 0.09 0.15 0.08

ne
ll-

1

.

.

.
64 0.11 0.10 0.08 0.08

Execution time (in seconds) for 107 queries on four large tensors

PARFKSLEAN is faster than or comparable to PTHash for all thread counts
13

Conclusions (Part-I)

‚ We propose FKSlean and its parallel version PARFKSLEAN for answering
hyperedge queries

‚ The construction phase of PARFKSLEAN exhibits good parallel scaling

‚ FKSlean and PARFKSLEAN both outperform the state-of-the-art in
construction and query response time

14

Sparse Tensor Contraction (SpGETT)
‚ Tensor contraction is a higher-dimensional analog of matrix-matrix multiplication

‚ Multiplication of two matrices: A P RIˆK and B P RK ˆJ

Cij “
ÿ

k

Aik .Bkj

Ci,j Ai,:
B:,ji

j

i

k

k

j

k is the contraction index
15

Sparse Tensor Contraction (SpGETT)

‚ Contraction of two tensors: A P RIˆJˆPˆQ and B P RPˆQˆK ˆL

with p,q as contraction indices

C ijkl “
ÿ

pq

Aijpq.Bpqkl

C(i,j),(k,l) A(i,j),:,:

B:,:,(k,l)(i, j)

(k, l)

(i, j)

(k, l)

(p, q)

(p, q)

16

Gustavson’s algorithm for SpGEMM
‚ C “ AB

Gamma: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication ASPLOS ’21, April 19ś23, 2021, Virtual, USA

for k in [0, K)

for m in [0, M)

for n in [0, N)

C[m,n] += A[m,k] * B[k,n]

Mfor m in [0, M)

for n in [0, N)

for k in [0, K)

C[m,n] += A[m,k] * B[k,n]

Inner-product

dataflow
=x

AMxK BKxN CMxN

KK

N

M

N

Outer-product

dataflow
=x

for m in [0, M)

for k in [0, K)

for n in [0, N)

C[m,n] += A[m,k] * B[k,n]

Gustavson

dataflow
=x

Figure 2: Comparison of basic spMspM dataflows.

Inner-product is an output-stationary3 dataflow: it computes the

output matrix one element at a time, simultaneously traversing (i.e.,

co-iterating) rows (𝑚) of𝐴 and columns (𝑛) of 𝐵. This achieves good

output reuse, but poor input reuse. Since 𝐴 and 𝐵 are sparse, this

traversal requires an intersection, as only nonzeros with matching

𝑘 coordinates contribute towards the output. Inner-product is rela-

tively efficient when the input matrices are nearly dense. But with

highly sparse matrices, inner-product is dominated by the cost of

intersections, which are inefficient because all elements of the rows

and columns must be traversed, even though there are few effectual

intersections, i.e., cases where both elements are nonzero. For ex-

ample, in Fig. 2, intersecting row 𝐴1 and column 𝐵2 is completely

ineffectual, as they have no nonzeros with the same coordinate.

Outer-product, by contrast, is an input-stationary dataflow: it com-

putes the output one partial matrix at a time, traversing each col-

umn of 𝐴 (𝑘) and row of 𝐵 (𝑘) once and computing a full 𝑀 × 𝑁

matrix that incorporates all their contributions to the output. Then,

all 𝐾 partial output matrices are combined to produce the final out-

put matrix. Outer-product achieves good reuse of input matrices.

Additionally, outer-product avoids inner-product’s inefficiencies of

ineffectual intersections: each co-iteration of a column of 𝐴 and a

row of 𝐵 is ineffectual only when either is all-zeros, which is un-

likely. However, outer-product is limited by poor output reuse: the

combined size of the partial output matrices is often much larger

than the final output, so they cause significant traffic. Moreover,

combining these partial output matrices is a complex operation.

Gustavson, finally, is a row-stationary dataflow: it computes the

output matrix one row at a time, by traversing a row of 𝐴 (𝑚) and

scaling and reducing, i.e., linearly combining, the rows of 𝐵 (𝑘) for

which the row of 𝐴 has nonzero coordinates. Specifically, given a

row 𝐴𝑖 with nonzeros 𝑎𝑖 𝑗 , output row 𝐶𝑖 is produced by linearly

combining 𝐵’s rows 𝐵 𝑗 , i.e., 𝐶𝑖 =

∑
𝑗 𝑎𝑖 𝑗𝐵 𝑗 . Gustavson is more

efficient because it avoids the extremes of inner- and outer-product

dataflows. While Gustavson does not get as much reuse of a single

value as either inner- or outer-product dataflows, it gets reuse of

3We use the *-stationary terminology from Chen et al. [9].

modestly sized rows. Unlike outer-product, Gustavson requires

combining partial output rows rather than partial output matrices,

a simpler operation on much smaller intermediates that more easily

fit on-chip; and unlike inner-product, Gustavson avoids ineffectual

intersections and poor input reuse.

Finally, Gustavson has an additional advantage over the other

dataflows: its inputs and outputs are all in a consistent format,

CSR.4 By contrast, inner- or outer-product require one input to

be in CSR and the other in CSC, to support efficient concordant

traversals. We do not evaluate this issue further, but for compound

operations (e.g., matrix exponentiation), having different formats

requires expensive operand transformations, e.g., converting CSC

to CSR, that rival the cost of accelerated spMspM [11].

2.3 spMspM Accelerators
Despite the advantages of Gustavson’s algorithm, prior spMspM

accelerators have focused on inner- and outer-product dataflows,

seeking to maximize reuse of one operand. These designs incorpo-

rate different optimizations over the basic dataflow they adopt to

mitigate its inefficiencies.

Accelerators like UCNN [20] and SIGMA [43] implement inner-

product spMspM. These designs are built around hardware support

to accelerate intersections: UCNN traverses compressed sparse data

structures, while SIGMA uses a hardware-friendly bitmap-based

fiber representation to further accelerate intersections. To counter

poor input reuse, some designs also tile input matrices [19] to fit

on-chip. While these designs achieve much higher throughput than

CPUs and GPUs when matrices are relatively dense (as is typical

in e.g. deep learning inference), they suffer from the algorithmic

inefficiencies of ineffectual intersections on sparse matrices.

By contrast, accelerators includingOuterSPACE [37], SpArch [59],

and SCNN [39] implement an outer-product dataflow, and take dif-

ferent approaches to mitigate its inefficiencies. To reduce merge

complexity, OuterSPACE divides partial output matrices in rows,

then merges rows individually. However, OuterSPACE produces

a large amount of off-chip traffic due to partial outputs, which do

not fit on-chip. SpArch, by contrast, is built around a very complex

high-throughput, high-radix merger that can merge up to 64 partial

matrices per pass, and two main techniques to use this merger well:

pipelining the production of the partial output matrices and their

merging to avoid spilling them off-chip, and using a matrix condens-

ing technique that reduces the number and size of partial output

matrices. Scaling up SpArch is inefficient because its throughput is

bottlenecked by the merger, and scaling up the merger’s throughput

incurs quadratic area and energy costs. Instead, Gamma achieves

high throughput with linear cost by performing many indepen-

dent merges in parallel. On highly sparse matrices, SpArch often

achieves nearly perfect off-chip traffic because it can produce fewer

than 64 partial output matrices; however, on large or less-sparse

matrices, SpArch incurs high traffic as it needs to spill many par-

tial outputs off-chip. SpArch’s matrix condensing technique also

sacrifices reuse of the 𝐵 matrix, which can add significant traffic.

Finally, some prior work adopts a hybrid of inner- and outer-

product: ExTensor [19] is a flexible accelerator for tensor algebra

that combines outer-product at the chip level, and inner-product

4Or CSC in the alternative Gustavson dataflow; see footnote 2.

3

A

B

C

i

k

k

j j

i

‚ Row-row formulation of SpGEMM

‚ Ci,: “
ř

k Aik .Bk ,:
17

Gustavson’s-like formulation for SpGETT
‚ C “ AB | A P RIˆJˆPˆQ, B P RPˆQˆK ˆL | Contraction dimensions: P,Q

Gamma: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication ASPLOS ’21, April 19ś23, 2021, Virtual, USA

for k in [0, K)

for m in [0, M)

for n in [0, N)

C[m,n] += A[m,k] * B[k,n]

Mfor m in [0, M)

for n in [0, N)

for k in [0, K)

C[m,n] += A[m,k] * B[k,n]

Inner-product

dataflow
=x

AMxK BKxN CMxN

KK

N

M

N

Outer-product

dataflow
=x

for m in [0, M)

for k in [0, K)

for n in [0, N)

C[m,n] += A[m,k] * B[k,n]

Gustavson

dataflow
=x

Figure 2: Comparison of basic spMspM dataflows.

Inner-product is an output-stationary3 dataflow: it computes the

output matrix one element at a time, simultaneously traversing (i.e.,

co-iterating) rows (𝑚) of𝐴 and columns (𝑛) of 𝐵. This achieves good

output reuse, but poor input reuse. Since 𝐴 and 𝐵 are sparse, this

traversal requires an intersection, as only nonzeros with matching

𝑘 coordinates contribute towards the output. Inner-product is rela-

tively efficient when the input matrices are nearly dense. But with

highly sparse matrices, inner-product is dominated by the cost of

intersections, which are inefficient because all elements of the rows

and columns must be traversed, even though there are few effectual

intersections, i.e., cases where both elements are nonzero. For ex-

ample, in Fig. 2, intersecting row 𝐴1 and column 𝐵2 is completely

ineffectual, as they have no nonzeros with the same coordinate.

Outer-product, by contrast, is an input-stationary dataflow: it com-

putes the output one partial matrix at a time, traversing each col-

umn of 𝐴 (𝑘) and row of 𝐵 (𝑘) once and computing a full 𝑀 × 𝑁

matrix that incorporates all their contributions to the output. Then,

all 𝐾 partial output matrices are combined to produce the final out-

put matrix. Outer-product achieves good reuse of input matrices.

Additionally, outer-product avoids inner-product’s inefficiencies of

ineffectual intersections: each co-iteration of a column of 𝐴 and a

row of 𝐵 is ineffectual only when either is all-zeros, which is un-

likely. However, outer-product is limited by poor output reuse: the

combined size of the partial output matrices is often much larger

than the final output, so they cause significant traffic. Moreover,

combining these partial output matrices is a complex operation.

Gustavson, finally, is a row-stationary dataflow: it computes the

output matrix one row at a time, by traversing a row of 𝐴 (𝑚) and

scaling and reducing, i.e., linearly combining, the rows of 𝐵 (𝑘) for

which the row of 𝐴 has nonzero coordinates. Specifically, given a

row 𝐴𝑖 with nonzeros 𝑎𝑖 𝑗 , output row 𝐶𝑖 is produced by linearly

combining 𝐵’s rows 𝐵 𝑗 , i.e., 𝐶𝑖 =

∑
𝑗 𝑎𝑖 𝑗𝐵 𝑗 . Gustavson is more

efficient because it avoids the extremes of inner- and outer-product

dataflows. While Gustavson does not get as much reuse of a single

value as either inner- or outer-product dataflows, it gets reuse of

3We use the *-stationary terminology from Chen et al. [9].

modestly sized rows. Unlike outer-product, Gustavson requires

combining partial output rows rather than partial output matrices,

a simpler operation on much smaller intermediates that more easily

fit on-chip; and unlike inner-product, Gustavson avoids ineffectual

intersections and poor input reuse.

Finally, Gustavson has an additional advantage over the other

dataflows: its inputs and outputs are all in a consistent format,

CSR.4 By contrast, inner- or outer-product require one input to

be in CSR and the other in CSC, to support efficient concordant

traversals. We do not evaluate this issue further, but for compound

operations (e.g., matrix exponentiation), having different formats

requires expensive operand transformations, e.g., converting CSC

to CSR, that rival the cost of accelerated spMspM [11].

2.3 spMspM Accelerators
Despite the advantages of Gustavson’s algorithm, prior spMspM

accelerators have focused on inner- and outer-product dataflows,

seeking to maximize reuse of one operand. These designs incorpo-

rate different optimizations over the basic dataflow they adopt to

mitigate its inefficiencies.

Accelerators like UCNN [20] and SIGMA [43] implement inner-

product spMspM. These designs are built around hardware support

to accelerate intersections: UCNN traverses compressed sparse data

structures, while SIGMA uses a hardware-friendly bitmap-based

fiber representation to further accelerate intersections. To counter

poor input reuse, some designs also tile input matrices [19] to fit

on-chip. While these designs achieve much higher throughput than

CPUs and GPUs when matrices are relatively dense (as is typical

in e.g. deep learning inference), they suffer from the algorithmic

inefficiencies of ineffectual intersections on sparse matrices.

By contrast, accelerators includingOuterSPACE [37], SpArch [59],

and SCNN [39] implement an outer-product dataflow, and take dif-

ferent approaches to mitigate its inefficiencies. To reduce merge

complexity, OuterSPACE divides partial output matrices in rows,

then merges rows individually. However, OuterSPACE produces

a large amount of off-chip traffic due to partial outputs, which do

not fit on-chip. SpArch, by contrast, is built around a very complex

high-throughput, high-radix merger that can merge up to 64 partial

matrices per pass, and two main techniques to use this merger well:

pipelining the production of the partial output matrices and their

merging to avoid spilling them off-chip, and using a matrix condens-

ing technique that reduces the number and size of partial output

matrices. Scaling up SpArch is inefficient because its throughput is

bottlenecked by the merger, and scaling up the merger’s throughput

incurs quadratic area and energy costs. Instead, Gamma achieves

high throughput with linear cost by performing many indepen-

dent merges in parallel. On highly sparse matrices, SpArch often

achieves nearly perfect off-chip traffic because it can produce fewer

than 64 partial output matrices; however, on large or less-sparse

matrices, SpArch incurs high traffic as it needs to spill many par-

tial outputs off-chip. SpArch’s matrix condensing technique also

sacrifices reuse of the 𝐵 matrix, which can add significant traffic.

Finally, some prior work adopts a hybrid of inner- and outer-

product: ExTensor [19] is a flexible accelerator for tensor algebra

that combines outer-product at the chip level, and inner-product

4Or CSC in the alternative Gustavson dataflow; see footnote 2.

3

A

B

C

pi,jq

pp,qq

pp,qq

pk ,lq pk ,lq

pi,jq

‚ Row-wise SpGETT

‚ C i,j,:,: “
ř

pq Aijpq.Bp,q,:,:
18

FKSCuckoo: Dynamic perfect hashing

‚ Allows dynamic insertions

‚ There can be multiple items that share the same hashing indices

‚ Perfect hashing of a dynamic set of nonzeros

19

FKSCuckoo
B0

B1

Bn−1

indices

id0

k

1 r

hashing

id1

indices
hashing

idp

idq

k0 k1 k2 kr

indices
hashing

idv

idm

idw

slots

idl

nh-1

0

nh-1

0

K

auxiliary list

FKSCuckoo data structure

‚ A two-level structure

‚ nh ď d hashing indices

‚ First level hash function:

hpk, x, p, nq :“ pkT x mod pq mod n

‚ Second level: Apply cuckoo hashing

‚ Items with the same hashing indices added to its
auxiliary list

‚ k: random nh-tuple

‚ n: number of nonzeros in tensor T
‚ p: prime number ą n

‚ bi : number of nonzeros mapped to bucket Bi
20

Cuckoo Hashing
Cuckoo hashing is a perfect hashing approach with Op1q lookup time in the worst case

x

s = 2t
t

items

slots

y

z

h1pxq

h2 pxq
‚ Construct a bipartite graph on items and slots

‚ The slots where an item, x, can be placed:
h1pxq :“ pkT

1 x mod pq mod s
h2pxq :“ pkT

2 x mod pq mod s

‚ Find a perfect matching of items to slots,
using a deterministic approach

21

Cuckoo Hashing
Cuckoo hashing is a perfect hashing approach with Op1q lookup time in the worst case

x

s = 2t
t

items

slots

y

z

‚ Construct a bipartite graph on items and slots

‚ The slots where an item, x, can be placed:
h1pxq :“ pkT

1 x mod pq mod s
h2pxq :“ pkT

2 x mod pq mod s

‚ Find a perfect matching of items to slots,
using a deterministic approach

21

SpGETT using FKSCuckoo
‚ Two 4D tensors: A P RI,J,P,Q and B P RP,Q,K ,L

‚ Tensor contraction C “ A ˆ B along dimensions P,Q

1. Create hash data structures for A and B: HA and HB respectively

‚ For HA, hash A using pi,jq

‚ For HB, hash B using pp,qq

22

SpGETT using FKSCuckoo
‚ Two 4D tensors: A P RI,J,P,Q and B P RP,Q,K ,L

‚ Tensor contraction C “ A ˆ B along dimensions P,Q

2. To generate a slice Cpi,j, : , :q, pick a slot in HA for pi,jq

‚ Pick each (p,q) in the auxiliary list of pi,jq in HA

‚ Find the (p,q) in HB

‚ Go over the nonzeros in the auxiliary list of pp,qq in HB

‚ Multiply and accumulate the partial products in HSPA and write to C
when the entire slice is populated

23

FKSCuckoo Results
‚ Operation considered for evaluation: C “ AAT

‚ Baseline: Sparta, the state-of-the-art for SpGETT

‚ Sequential execution: Ours is 1.01ˆ to 1.20ˆ faster than Sparta
on real-world tensors from FROSTT

‚ Parallel execution: Ours is 1.08ˆ to 1.25ˆ faster than Sparta
on real-world tensors from FROSTT across thread counts
of {16, 32, 48, 64, 80, 96}

24

Conclusions

‚ We propose a hashing-based method for SpGETT

‚ Our method outperforms the state-of-the-art both in the sequential and
parallel setting on real-world tensors

‚ Hashing-based methods for sparse tensor computations are promising

Thank You

25

Conclusions

‚ We propose a hashing-based method for SpGETT

‚ Our method outperforms the state-of-the-art both in the sequential and
parallel setting on real-world tensors

‚ Hashing-based methods for sparse tensor computations are promising

Thank You

25

Backup Slides

26

Input Tensors

Tensor d Dimensions n
chicago_crime (T-1) 4 6,186 ˆ 24 ˆ 77 ˆ 32 5,330,673

vast-2015-mc1-3d (T-2) 3 165,427 ˆ 11,374 ˆ 2 26,021,854
vast-2015-mc1-5d (T-3) 5 165,427 ˆ 11,374 ˆ 2 ˆ 100 ˆ

89
26,021,945

enron (T-4) 4 6,066 ˆ 5,699 ˆ 244,268 ˆ

1,176
54,202,099

nell-2 (T-5) 3 12,092 ˆ 9,184 ˆ 28,818 76,879,419
flickr-3d (T-6) 3 319,686 ˆ 28,153,045 ˆ

1,607,191
112,890,310

flickr-4d (T-7) 4 319,686 ˆ 28,153,045 ˆ

1,607,191 ˆ 731
112,890,310

delicious-3d (T-8) 3 532,924 ˆ 17,262,471 ˆ

2,480,308
140,126,181

delicious-4d (T-9) 4 532,924 ˆ 17,262,471 ˆ

2,480,308 ˆ 1,443
140,126,181

nell-1 (T-10) 3 2,902,330 ˆ 2,143,368 ˆ

25,495,389
143,599,552

Input tensors from FROSTT dataset
27

