
Round 1:
Containers, views and
algorithms.
Memory handling and abstractions, linear algebra support.

What this presentation is or is not ?

Motivation
The classic trio :

○ Containers, iterators and algorithms.

Generalization and abstraction of the STL
○ std::ranges and std::concepts

HPC use case : focus on contiguous memory.
○ std::vector<T,A>, std::array<T,N>, std::valarray<T>...
○ But, what about my super vector V<...> or T* ?

Going further with views
○ Can we catch the contiguous memory layout, unified the interface and enhanced the

generated code ?

std::span in C++20

A lightweight abstraction of a contiguous sequence of values of type T somewhere in memory.

A std::span can either have :

○ a static extent, in which case the number of elements in the sequence is known at compile-time and encoded
in the type,

○ a dynamic extent.

It’s a non-owning view.

○ Never allocate or deallocate.
○ Handle raw pointer (no smart pointer handling)

Why using it ?

○ Adapt any chunk of unidimension contiguous memory.
○ Unlock the STL power (ranges, algorithms, for range-based loops, …).
○ Span based code does not own the memory.
○ Help the compiler with easier static analysis.

Let’s play with some code!

Multidimensional containers

What about multidimensional based code?

○ Matrix
○ Tensors

Classic approaches

○ Using third party libraries : Eigen, blaze, xtensor…
○ Write your own library
○ Use low level primitives

Using third party libraries

Pros

○ High level interface
○ Collection of domain specific algorithms
○ EDSL / Expression Template oriented
○ Most of the time optimized by experts

Cons

○ Does it suit your needs ?
○ You may need to extend its support for your application
○ Can be a closed and self contained environment
○ Does it provides standard compliant support ?

Write your own container

Pros

○ Full control
○ Design will fit your needs
○ You decide which level of abstraction you need

Cons

○ Will your abstraction be composable with third party libraries or the standard ?
○ You have your hands on everything, maybe your not an expert on everything ?
○ Does the support will last for your users?

Use low level primitives

Pros

○ Full control
○ Design will fit your needs

Cons

○ You should really know what you are doing.
○ No abstraction, verbosity
○ Code readability is bad.
○ No standard/third library compliance.

std::mdspan in C++23

A multidimensional std::span
○ Generalization of std::span (static, dynamic, lightweight, …)
○ Still a non-owning view

Why using it ?
○ Adapt any chunk of multidimensional contiguous memory
○ High level abstraction on top of the memory
○ Unlock std::linalg support coming in C++26
○ Highly customisable for your needs
○ An adaptor to bridge the gap between third party libraries, low level memory

handling and standard code.

Reference implementation available until full support

std::linalg in C++26

Free function linear algebra interface based on the BLAS.

○ Standard BLAS calls in cpp
○ Linking your preferred BLAS implementation under the hood
○ std::mdspan as parameters
○ Catching compile time dimension and sizing to generate optimized calls.
○ Algorithms work with most of the matrix storage formats that the BLAS standard

supports

Reference implementation available until full support

Let’s play with some code!

Let’s wrap it up !

Generic multidimensional code available in the standard

Design opportunities for the HPC community

Code composability made easier

Interaction with C++ idioms

Reference implementations available

Going further : standard parallelism !?

Any thoughts or questions ?

To be continued…
…in round 2.

