
Round 3:
Existing ecosystems, design
methods and challenges.
Let’s discuss ?

What this presentation is or is not ?

2

Outline

 Existing ecosystems

All in one solutions and others of interest.

Design methods and challenges

Language and libraries opportunities & challenges

Discussion

Let’s discuss about what’s interesting or not, difficult or not…

3

Existing ecosystems : All in one solution.

4

Kokkos

“Kokkos Core implements a programming model in C++ for writing
performance portable applications targeting all major HPC platforms. For
that purpose it provides abstractions for both parallel execution of code
and data management. Kokkos is designed to target complex node
architectures with N-level memory hierarchies and multiple types of
execution resources.”

5

Kokkos Spaces

6

Execution spaces

Bind parallel work to the
instantiation of an execution space.

Multicores + 1 GPU = 2 execution
spaces

Compiling code and the dispatching
it to different instances is
abstracted by the Kokkos model.

Source : Kokkos

Kokkos Spaces

7

Memory spaces

The programmer can requests data
storage allocations through
instances of specific memory
spaces.

A multicore processor may have
multiple memory spaces available.

Source : Kokkos

Kokkos Programming Model

8

Source : Kokkos

Kokkos

9

High level of abstraction and
portability

Rich backends options (CUDA,
HIP, SYCL, HPX, OpenMP and
C++ threads)

Standard enthusiast

std::mdspan & std::linalg
reference implementations

Community / documentation

Available through Spack package
manager.

Parallelism expressivity tied to few
patterns mainly loop based.

Task paradigm support

Asynchrony

Composability outside of Kokkos
ecosystem ?

Raja

“RAJA is a software library of C++ abstractions, developed at Lawrence
Livermore National Laboratory (LLNL), that enable architecture and
programming model portability for high performance computing (HPC)
applications.”

“Mac and Windows laptops, parallel clusters of multicore commodity processors,
and large-scale supercomputers with advanced heterogeneous node
architectures that combine cutting edge CPU and accelerator (e.g., GPU)
processors. Exposing fine-grained parallelism in a portable, high performance
manner on varied and potentially disruptive architectures presents significant
challenges to developers of large-scale HPC applications. [...] RAJA is one C++
abstraction layer that helps address this performance portability challenge.”

10

Raja

Source : computing.llnl.gov
11

Raja

Source : computing.llnl.gov
12

Raja

Source : computing.llnl.gov
13

Raja

14

Abstraction and portability

Modularity in the components

Popular

Standard compliance

Complex and aging design

Parallelism expressivity tied to few
patterns mainly loop based

Task paradigm support

Asynchrony

Composability outside of Raja
ecosystem ?

Existing ecosystems : Vendors

15

NVIDIA

16

Source : NVIDIA

NVIDIA

17

High level to low level abstraction

Really standard enthusiast

Unlocked composability

Some even works on AMD ?

std::execution reference
implementation

Recent work shows a unification of
the C++ ecosystem (thrust, libcuxx,
CUB)

Documentation

A lot of components, not a clear and
straightforward ecosystem

Containers

Tedious to deploy

AMD

18Source : AMD

AMD

19Source : AMD

AMD

20Source : AMD

AMD ROCm

21

Follow the green rabbit, Neo.

Ok… HIP exists.

Follow the green rabbit, Neo.

Is following the green rabbit the
path you want to take Neo ?

Intel

OneAPI

Mainly based on SYCL open standard

SYCL

“SYCL is an open industry standard for programming a
heterogeneous system. The design of SYCL allows standard C++
source code to be written such that it can run on either an
heterogeneous device or on the host.”

22

Intel

23Source : Kronos

Intel

24

SYVL is an open standard

Compiler approach

Allows to target fancy architectures
like FPGAs

AdaptiveCpp may be of interest

Specific compiler needed with
complex architecture

OpenCL legacy

Support in the future ?

Needs backend support from
vendors (they may have other
plans)

Is it really composable ?

General design trends

25

Memory model

Unified Memory Space

Obliviate distributed computing challenges

Obliviate memory handling from the programming model

Yes but

Vendors tend to give access to both unified and non unified in
their frameworks.

26

Execution model

Regular patterns to the rescue

Parallel loops and scans abstraction

Few propose task based approach with support for coarse to fine grain
parallelism.

Some efforts are made to break barriers

and allow more asynchronism.

Part of this work is made to push further the standardisation
(std::execution).

27

Programming model
Abstractions are constructed from recurrent patterns

The algorithm. (the good)

The data. (the bad)

The machine. (the ugly)

Most of them put some makeup on the ugly through the memory model and the execution model.

Mainly because the algorithms drives everything.

But we know that it is not true.

Machines forces us to write application a certain way.

Data rearrangements or locality can (and will) enhanced the algorithms so we need some
latitude in software abstractions.

28

Programming model

Most of these ecosystems are or at least try to be standard compliant

With significant effort to contribute to the standard.

All are engaging to multidimensional abstractions

Through lightweight multidimensional views or multidimensional
arrays/buffers (with different memory handling strategies)

std::mdspan ?

Views are a recurrent concept

It allows powerful memory abstraction with user specific data.

29

Programming model

Asynchronism ?

Vendors support and runtimes tends to go this way.

Kokkos is extending the task paradigm.

std::execution pushed by NVIDIA

But is std::execution on par with most advanced runtimes ?

No, but it’s a start to asynchronism and task support within a

standard.

30

Distribution

Package managers not do frequent

Spack

Mainly based on CMake build system

C++ software stack deployment ?

31

Existing ecosystems : Others of interest &
Community

32

Github Top 5 #cpp #hpc
arrayfire

General-purpose tensor library CPU-GPU

boost compute

GPU/parallel-computing library for C++ based on OpenCL.

gunrock

CUDA library for graph-processing designed specifically for the GPU.

eve

C++20 and onward implementation of a type based wrapper around SIMD extensions sets

nvidia cccl

CUDA C++ Core Libraries unifies three essential CUDA C++ libraries : Thrust, CUB & libcuxx

33

Others

A lot actually…

https://github.com/trevor-vincent/awesome-high-performance-computi
ng?tab=readme-ov-file#software

34

https://github.com/trevor-vincent/awesome-high-performance-computing?tab=readme-ov-file#software
https://github.com/trevor-vincent/awesome-high-performance-computing?tab=readme-ov-file#software

Community

Some ressources :

https://notes.inria.fr/s/F8koaNZUF#

Reddit

https://www.reddit.com/r/cpp/

Slack / The cpp alliance

https://cppalliance.org/

35

https://notes.inria.fr/s/F8koaNZUF#
https://www.reddit.com/r/cpp/
https://cppalliance.org/

Challenges

36

The Ferrari of Hpc ?

37

The Ferrari of Hpc ?

38

The Ferrari of Hpc ?

39

The Ferrari of Hpc ?

40

The Ferrari of Hpc ?

41

The Ferrari of Hpc ?

42

The Ferrari of Hpc ?

43

The Ferrari of Hpc ?

44

Let’s wrap it up & discuss !

C++ ecosystem ?

The needs ?

The direction ?

45

