
Round 2:
Standard parallelism.
Can we ?

What this presentation is or is not ?

2

Outline

std::simd

Abstraction for vectorization

Parallel Algorithms

First step towards standard support for parallelism

std::execution

Going further with design opportunities

3

SIMD abstractions

4

Quick Reminder

5

std::simd in C++26… maybe…

Why ?

Performance !

But how ?

By hand, with intrinsics… maybe no.

Let the compiler do it ! Ok but…
maybe no.

First step

So, can I write SIMD code like scalar
code ?

6

[…]
const __m256 a = _mm256_loadu_ps(p1);
const __m256 b = _mm256_loadu_ps(p2);
__m256 res = _mm256_add_ps(a, b);
[…]

std::simd in C++26… maybe…

Developers libraries

Yes, we can ease this process with third party libraries.

There is history here.

Eve (boost.simd), xsimd, etc…

Should the standard jump in the train ?

Yes it has, some work has been done in the Parallelism TS v2

Now targeting C++26

7

std::simd in C++26… maybe…

A data parallel type, defined as a class template of type T.

Width of a given simd instantiation is a constant expression, determined by the template parameters.

std::simd<T>

Arithmetic operators, comparisons, masking abilities, ABI compatibility concerns, small amount of simd aware
algorithms …

Intrinsics wrappers or more?

Will std::simd be on par with developer libraries ?

Is this a problem if …

We can go further with this ?

Parallel execution policies and constrained algorithms.

8

Parallel algorithms

9

Standard algorithms

Works sequentially on iterators.

std::transform(std::begin(my_container), std::end(my_container)

 , [](auto e){ return std::cos(e); })

Great, standard sequential code…

But can I have a free parallel version of my code ?

10

Standard parallel algorithms

Yes, since C++17 and parallel policies.
std::transform(std::execution::par

 , std::begin(my_container), std::end(my_container)

 , [](auto e){ return std::cos(e); })

Different execution policies available
std::execution::seq -> op in the calling thread, indeterminately sequenced

std::execution::unseq -> op in the calling thread, unsequenced

std::execution::par -> potentially in multiple threads, indeterminately sequenced within each threads

std::execution::par_unseq -> potentially in multiple threads, unsequenced

11

Standard parallel algorithms

Fork and join.

Pretty cool but,

what about merging two steps ?

12

algorithm 1 :
std::transform(...,f)

algorithm 2 :
std::for_each(...,g)

Standard parallel algorithms

Yes, we can go further with the laziness of range adaptors from C++20.

std::vector x{...};

auto v = std::views::transform(x, f);

std::for_each(std::begin(v), std::end(v), g);

13

f

g

Standard parallel algorithms

Now, what are we missing?

Unlock the fork and join model

Get rid of possible latencies

Say where things should execute

So, what do we need?

A model for asynchrony

A way to attach work to a computing resource

14

std::execution : Senders and Receivers

15

std::execution : Senders and Receivers

The standard answers the previous concerns with :

Senders and Receivers

Targeting C++26

Reference implementation available from NVIDIA.

16

std::execution : Senders and Receivers

namespace ex = std::execution;

// retrieve a scheduler

ex::scheduler auto sch = thread_pool.scheduler();
// start chain of work

ex::sender auto begin = ex::schedule(sch);
// compose work on top of the first sender,

// return a new sender that will complete on the same execution context

ex::sender auto hi = ex::then(begin, [](){ return 13; });
// adding more work here

ex::sender auto add = ex::then(hi, [](int a){ return a + 42; });
// we finally wait for completion

auto [res] = std::this_thread::sync_wait(add).value();

17

std::execution : Senders and Receivers

Schedulers are handles to execution contexts

Senders represent asynchronous work

Receivers process asynchronous signals

18

std::execution : Senders and Receivers

scheduler
19

thread pool context gpu stream context current thread context

scheduler scheduler scheduler

scheduler

std::execution : Senders and Receivers

Schedulers produce senders

that will produce work

on the execution contexts attach to the schedulers.

Once we have a sender, we can compose work on it.

20

std::execution : Senders and Receivers

We get senders with sender factories.

schedule(), just(), transfer_just()...

We compose work on senders with sender adaptors.

then(), bulk(), on(), transfer(), split(), when_all(), ensure_started()...

We start work by connecting sender graphs with sender consumers.

sync_wait(), start_detached(), execute()

21

std::execution : Senders and Receivers

Senders and Receivers are compatible with C++20 std::coroutines

Coroutines are stackless functions that can suspend execution to be resumed later.

Distributed memory support ?

It should, but not in a transparent way. (Extensions ? Runtime support under the hood ? *)

Error handling support

By design.

User facing design / Implementer facing design

Implementer side is open for adding support and extensions.(*)

Remember ? I never talked about receivers… :)

22

Let’s wrap it up !

Quick reminder : std::span (20), std::mdspan (23), std::blas (26)

Parallel algorithms available since c++17.

Targeting c++26

std::execution :

- reference implementation available, NVIDIA
- designed to be composable and extended

std::simd

- work available in Parallelism TS v2 (gcc11, clang in progress)

23

Let’s wrap it up !

Concerns about :

- Is the scope of these works covering our needs ?

- If not, the c++ community may have already starts some works on
the side of the standard. Round 3?

- What are your concerns/ideas ? Round 3 !

Going further : standard c++ ecosystem starts to be powerful right !?
Let’s see if we can make it even more…

24

Any thoughts or questions ?

To be continued…
…in round 3.

25

