
Pipelined Model Parallelism: Complexity Results and

Memory Considerations

Topal Working Group – May 6, 2021

Olivier Beaumont, Lionel Eyraud-Dubois, Alena Shilova



Context

• During the first half of Alena’s thesis,

• much attention was paid to memory problems during training
lifetime of x1

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2
xL−2 xL−1 xL loss

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx1 x2 x3 xL−1 xL loss

• linearized networks (we continue to use this assumption)
• x1 must be kept in memory for a very long time, so

• either we delete it and recompute it later (re-materialization)

• or we store it in the (large) memory of the CPU (offloading)

• Question: what about parallelism ?
• With Linear Algebra applications

• overall memory is (more or less) distributed among nodes (Loomis Whitney)

• With Training

• 2 sources of memory needs (network weights and activations)

• network weights: updated after each mini-batch (say every 32 trained images)

• activations: 2 dependences, 1 very short, 1 long (once per image and per layer)

1



What do networks look like ?

• Ex: VGG16:

• The memory to store activations is not negligible at all

• the number of weights increases with depth

• the size of activations becomes smaller with depth

2



Data Parallelism: Mini Batch Parallelism

With N (identical) GPUs

• Each GPU can perform SGD with a

batch size of B

• We train in parallel a batch size of

size BN (B on each GPU)

• Each resource computes a gradient

(size of all weights)

• MPI Allreduce is used to compute

a global gradient

• A new set of NB images is used for

training...

Sequential

Parallel

Limitations

• there is a strict barrier at the end of each Allreduce operation

• thus, MPI Allreduce is expensive when N becomes large

3



Data Parallelism: Does it work well ?

• the weights are communicated in collective operations

• activations (transformed images) are always kept local

• performance strongly depends on the size of the network

the speed of the interconnect

• YES: DK Panda’s group on Summit:

• NO: Pipedream group on AWS:

4



Model Parallelism

General Idea

• distribute the network itself onto several nodes (distributed memory)

• Advantages: distribute both weights and activations

• Each GPU

• stores only the weights for its own layers

• stores only the activations corresponding to these layers

• Data Parallelism: communication of network weights

• Model Parallelism: communication of activations

5



Model Parallelism: what can be expected ?

• If we assume that the graph is a chain:

• Characteristics (homogeneous layers)

• Work in Θ(2L)

• Critical Path in Θ(2L)

• trivial sequential solution in Θ(2L)...

• There is not much to expect: LowerBound = max(CP,W /P)!

• But: Possibility to distribute memory

• More importantly, possibility to use pipelining

insert one new image in the pipeline every x ms

6



Model Parallelism – Pipelined Versions

Source: PipeDream: Generalized Pipeline Parallelism for DNN Training,

Deepak Narayanan et al., SOSP’19

• Training task graph is very sequential by nature

• How to increase resource utilization? by splitting the work into smaller

pieces (micro batches) and use pipelining

• Ok, there is still a lot of idle time... keep several copies of the weights (to

make consistent updates)

7



Model Parallelism – Pipedream

Pipedream is extremely nice, but many unclear issues

• About Memory
• You need to keep the weights used for Forward(Ii ) until Backward(Ii )

• I1, I2, I3, I4 with the same, but I5, I6 and I7 correspond to different model

weights... if you update weights immediately after backward

• You need to keep several activations simultaneously

• Bk−4 is performed immediately before Fk , so Fk−4, Fk−3, Fk−2, Fk−1 must

reside in memory at the same time

• Concerning scheduling, Pipedream says

• Just inject several images in the pipeline (here 4)

• alternate backward and forward (in the natural order)

• ...and it will work !

8



Model Parallelism – Periodic Schedules – Memory for Models

Pipedream builds 1-periodic schedules (1 type of each task in each period)

• About Memory required for the models
• You need to keep the weights used for Forward(Ii ) until Backward(Ii )

• In fact you can always keep only 2 versions of the weights

• For instance,

• 1 model M0 used for F 0
1 , F 1

1 , F 2
1

• accumulate gradients in B corresponding to B0
1 , B1

1 , B2
1

• another model M1 for F 3
1 , F 4

1 , F 5
1

• update M0 after B2
1 , reset B

• accumulate gradients in B corresponding to B3
1 , B4

1 , B5
1

• update M1 after B5
1 , reset B

• and so on...

• We need to keep only a small (say 3) number of models.

9



Model Parallelism – Periodic Schedules – Memory for Activations

Different types of Periodic Schedules
1-periodic: 2-periodic:

About Memory required for the activations

• For layer l , ncal = maxt #Fl (t
′ < t) − #Bl (t

′ < t)

where #Fl (t
′ < t) counts the number of Fl

• For periodic schedules, looking at shifts in the schedule is enough

Valid Periodic Schedule

• operations in the right order: F j
i ends before F j+1

i and B j
i

F j
i ends before F j

i+1

• Overall memory not exceeded (can be computed from the schedule)

Well formulated optimization problem

• When restricting the search to periodic schedules 10



Classical (Pipedream’s) Assumptions

Two implicit assumptions

• Consider only 1-periodic schedules (more simplicity)

• Consider only contiguous allocations

• Contiguous: P0 receives L0, . . . , Li , P1 receives Li+1, . . . , Lj ,...

• Intuition: more stages mean larger index shift on P0

Questioning these assumptions

• they are rather intuitive

• enable to find easily good allocations (layers to processors) and good

(1-periodic) schedules

• Our Paper: what influence on the quality (throughput) of the schedules?

11



Model Parallelism – Complexity Results

General Problem: Allocation & Schedule

• Inputs: weights, activation sizes, processing times (F & B)

GPU memories and target throughput T

• Goal: Find an allocation and a periodic schedule with throughput ≥ T

• NP Complete in the strong sense

Scheduling Only Problem

• Even if the allocation of layers to GPUs is given

• and we only look for a valid periodic schedule with throughput ≥ T

• The problem remains NP Complete in the strong sense

12



Model Parallelism – Finding Good Schedules

Positive Result: optimal 1-periodic schedule

• Given an allocation and a target throughput, it is possible to find an

optimal 1-Periodic Schedule that minimizes the memory needs

• The algorithm is non-trivial, but computationally cheap

Negative Result: 1-periodic is not always enough

• There exists allocations for which no j-periodic schedule with j < k is able

to provide the same throughput as a k-periodic schedule.

k + 1 layers

T = 2(k + 1)

• ∀j , k the performance ratio is as large as
(

1 + 1
j

)
/
(
1 + 1

k

)
• Restricting the search to 1-periodic schedules hinders throughput

13



Model Parallelism – Contiguous vs non-Contiguous Allocations

How efficient are contiguous allocations, where each processor is in charge of

a sequence of contiguous layers?

Without memory constraints

• Positive result: The best contiguous throughput is at most twice smaller

than the best non-contiguous throughput

• Negative result: ∀k, there are cases where the ratio is 2− 1/k

With memory constraints, only negative results

• There are cases where non-contiguous allocations are actually needed (i.e

where contiguous allocations fail under memory constraint)

• If both non-contiguous and contiguous allocations exist, then the

throughput with non-contiguous allocations can be arbitrarily larger.

14



Conclusion

Pipedream has in theory many drawbacks...

• uses 1-periodic and contiguous allocations, both can hinder throughput

• worse, the solution might not fulfill memory constraints

But it is very hard to improve it!

• Integer Linear Programming based solution

• with a rather complete model

• limited to (very) small problems

• Dynamic Programming based solution

• separates allocation and scheduling issues (known to be a bad idea)

• looks for solutions in a larger class (1 proc with an arbitrary set of stages)

• still, it is expected to improve performance

In practice, the solutions of Pipedream are

• very simple

• easy to implement at runtime (finding which task to perform next is trivial)

The complete problem turns out to be very complicated!

• Simplifying assumptions are needed 15



Perspectives

Pros and Cons of Model parallelism

• cheap in terms of communications

• memory hungry, might be combined with re-materialization / offloading

• limited in terms of expected scalability (not more GPUs than layers)

• deeper pipelines generate large memory needs

Should be combined with other type of parallelisms, typically Data

• Model parallelism defines groups of layers, Data Parallelism inside groups

• Collective communications take place in smaller groups

• Each image will pass through one GPU from each group, can be dynamic

Modeling both data and model parallelisms will be difficult

• It is hard the find the right simplifying assumptions

Practical solutions already exist

• Awan, Ammar Ahmad, et al. HyPar-Flow: Exploiting MPI and Keras for

Scalable Hybrid-Parallel DNN Training with TensorFlow. International

Conference on High Performance Computing. Springer, Cham, 2020. 16


