

Pipelined Model Parallelism: Complexity Results and Memory Considerations Topal Working Group – May 6, 2021

Olivier Beaumont, Lionel Eyraud-Dubois, Alena Shilova

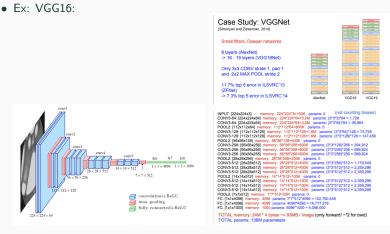
Context

- During the first half of Alena's thesis,
 - much attention was paid to memory problems during training



- linearized networks (we continue to use this assumption)
- x₁ must be kept in memory for a very long time, so
 - either we delete it and recompute it later (re-materialization)
 - or we store it in the (large) memory of the CPU (offloading)
- Question: what about parallelism ?
 - With Linear Algebra applications
 - overall memory is (more or less) distributed among nodes (Loomis Whitney)
 - With Training
 - 2 sources of memory needs (network weights and activations)
 - network weights: updated after each mini-batch (say every 32 trained images)
 - activations: 2 dependences, 1 very short, 1 long (once per image and per layer)

What do networks look like ?



- The memory to store activations is not negligible at all
 - the number of weights increases with depth
 - the size of activations becomes smaller with depth

Data Parallelism: Mini Batch Parallelism

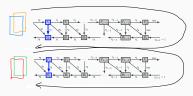
With N (identical) GPUs

- Each GPU can perform SGD with a batch size of *B*
- We train in parallel a batch size of size *BN* (*B* on each GPU)
- Each resource computes a gradient (size of all weights)
- MPI Allreduce is used to compute a global gradient
- A new set of *NB* images is used for training...

Limitations

- there is a strict barrier at the end of each Allreduce operation
- thus, MPI Allreduce is expensive when N becomes large

Parallel



Data Parallelism: Does it work well ?

- the weights are communicated in collective operations
- activations (transformed images) are always kept local
- performance strongly depends on the size of the network

the speed of the interconnect

• YES: DK Panda's group on Summit:



Figure 1: Hardware configuration of NVIDIA DGX2 system with cutting-edge GPU and interconnect architectures

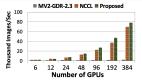
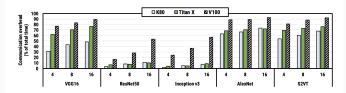


Figure 16: ResNet-50 Training using PyTorch on Summit system (6 GPUs/node)¹

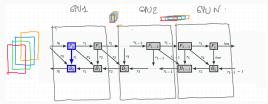
• NO: Pipedream group on AWS:



General Idea

- distribute the network itself onto several nodes (distributed memory)
- Advantages: distribute both weights and activations
- Each GPU
 - stores only the weights for its own layers
 - stores only the activations corresponding to these layers
- Data Parallelism: communication of network weights
- Model Parallelism: communication of activations

• If we assume that the graph is a chain:



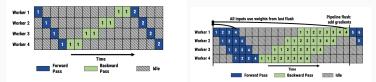
- Characteristics (homogeneous layers)
 - Work in $\Theta(2L)$
 - Critical Path in $\Theta(2L)$
 - trivial sequential solution in $\Theta(2L)...$
- There is not much to expect: LowerBound = $\max(CP, W/P)!$
- But: Possibility to distribute memory
- More importantly, possibility to use pipelining

insert one new image in the pipeline every x ms

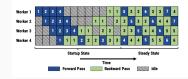
Model Parallelism – Pipelined Versions

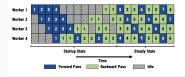
Source: PipeDream: Generalized Pipeline Parallelism for DNN Training, Deepak Narayanan et al., SOSP'19

• Training task graph is very sequential by nature



- How to increase resource utilization? by splitting the work into smaller pieces (micro batches) and use pipelining
- Ok, there is still a lot of idle time... keep several copies of the weights (to make consistent updates)



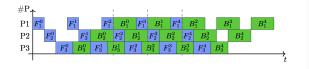


Pipedream is extremely nice, but many unclear issues

- About Memory
 - You need to keep the weights used for Forward (I_i) until Backward (I_i)
 - *I*₁, *I*₂, *I*₃, *I*₄ with the same, but *I*₅, *I*₆ and *I*₇ correspond to different model weights... if you update weights immediately after backward
 - · You need to keep several activations simultaneously
 - B_{k-4} is performed immediately before F_k , so F_{k-4} , F_{k-3} , F_{k-2} , F_{k-1} must reside in memory at the same time
- Concerning scheduling, Pipedream says
 - Just inject several images in the pipeline (here 4)
 - alternate backward and forward (in the natural order)
 - ...and it will work !

Model Parallelism – Periodic Schedules – Memory for Models

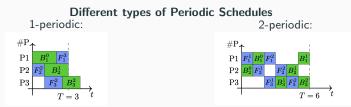
Pipedream builds 1-periodic schedules (1 type of each task in each period)



About Memory required for the models

- You need to keep the weights used for $Forward(I_i)$ until Backward(I_i)
 - · In fact you can always keep only 2 versions of the weights
- For instance,
 - 1 model M0 used for F_1^0 , F_1^1 , F_1^2
 - accumulate gradients in B corresponding to B_1^0 , B_1^1 , B_1^2
 - another model M1 for F_1^3 , F_1^4 , F_1^5
 - update M0 after B_1^2 , reset B
 - accumulate gradients in B corresponding to B_1^3 , B_1^4 , B_1^5
 - update M1 after B₁⁵, reset B
 - and so on...
- We need to keep only a small (say 3) number of models.

Model Parallelism – Periodic Schedules – Memory for Activations



About Memory required for the activations

- For layer I, NCA_I = max_t $\#F_I(t' < t) \#B_I(t' < t)$ where $\#F_I(t' < t)$ counts the number of F_I
- For periodic schedules, looking at shifts in the schedule is enough

Valid Periodic Schedule

- operations in the right order: F_i^j ends before F_i^{j+1} and B_i^j F_i^j ends before F_{i+1}^j
- Overall memory not exceeded (can be computed from the schedule)

Well formulated optimization problem

• When restricting the search to periodic schedules

Two implicit assumptions

- Consider only 1-periodic schedules (more simplicity)
- Consider only contiguous allocations
 - Contiguous: P_0 receives L_0, \ldots, L_i , P_1 receives $L_{i+1}, \ldots, L_j, \ldots$
 - Intuition: more stages mean larger index shift on P₀

Questioning these assumptions

- they are rather intuitive
- enable to find easily good allocations (layers to processors) and good (1-periodic) schedules
- Our Paper: what influence on the quality (throughput) of the schedules?

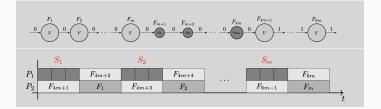
Model Parallelism – Complexity Results

General Problem: Allocation & Schedule

- Inputs: weights, activation sizes, processing times (F & B) GPU memories and target throughput *T*
- Goal: Find an allocation and a periodic schedule with throughput \geq T
- NP Complete in the strong sense

Scheduling Only Problem

- Even if the allocation of layers to GPUs is given
- and we only look for a valid periodic schedule with throughput $\geq {\cal T}$
- The problem remains NP Complete in the strong sense

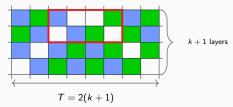


Positive Result: optimal 1-periodic schedule

- Given an allocation and a target throughput, it is possible to find an optimal 1-Periodic Schedule that **minimizes the memory needs**
- The algorithm is non-trivial, but computationally cheap

Negative Result: 1-periodic is not always enough

• There exists allocations for which no *j*-periodic schedule with *j* < *k* is able to provide the same throughput as a *k*-periodic schedule.



- $\forall j, k$ the performance ratio is as large as $\left(1 + \frac{1}{j}\right) / \left(1 + \frac{1}{k}\right)$
- Restricting the search to 1-periodic schedules hinders throughput

How efficient are **contiguous allocations**, where each processor is in charge of a sequence of contiguous layers?

Without memory constraints

- **Positive result:** The best *contiguous* throughput is at most **twice smaller** than the best *non-contiguous* throughput
- Negative result: $\forall k$, there are cases where the ratio is 2 1/k

With memory constraints, only negative results

- There are cases where non-contiguous allocations are actually needed (*i.e* where contiguous allocations fail under memory constraint)
- If both non-contiguous and contiguous allocations exist, then the throughput with non-contiguous allocations can be arbitrarily larger.

Conclusion

Pipedream has in theory many drawbacks...

- $\bullet\,$ uses 1-periodic and contiguous allocations, both can hinder throughput
- worse, the solution might not fulfill memory constraints

But it is very hard to improve it!

- Integer Linear Programming based solution
 - with a rather complete model
 - limited to (very) small problems
- Dynamic Programming based solution
 - separates allocation and scheduling issues (known to be a bad idea)
 - looks for solutions in a larger class (1 proc with an arbitrary set of stages)
 - still, it is expected to improve performance

In practice, the solutions of Pipedream are

- very simple
- easy to implement at runtime (finding which task to perform next is trivial)

The complete problem turns out to be very complicated!

• Simplifying assumptions are needed

Perspectives

Pros and Cons of Model parallelism

- cheap in terms of communications
- memory hungry, might be combined with re-materialization / offloading
- limited in terms of expected scalability (not more GPUs than layers)
- deeper pipelines generate large memory needs

Should be combined with other type of parallelisms, typically Data

- Model parallelism defines groups of layers, Data Parallelism inside groups
- Collective communications take place in smaller groups
- Each image will pass through one GPU from each group, can be dynamic

Modeling both data and model parallelisms will be difficult

• It is hard the find the right simplifying assumptions

Practical solutions already exist

 Awan, Ammar Ahmad, et al. HyPar-Flow: Exploiting MPI and Keras for Scalable Hybrid-Parallel DNN Training with TensorFlow. International Conference on High Performance Computing. Springer, Cham, 2020.