Graph Neural Networks

What? Architectures of neural networks taking graphs as input

When? When data is naturally presented as a graph

Why? Because graphs = relations

How? Let's see!

Background

MLP = Multi Layer Perceptron

\[\phi_\Theta : \mathbb{R}^n \rightarrow \mathbb{R}^j \]

\(\Theta \) set of parameters

MLP can be trained efficiently
What is a graph?

Nodes: V
Node features: $F_v \in \mathbb{R}^n$
Edges: E
Edge features: $F_e \in \mathbb{R}^d$
Graph features: $g \in \mathbb{R}^k$

Graph structured data?

- social networks ✔
- molecules ✔
- images
- text
- transportation networks ✔

This is a sentence
What is special about graphs?

- represent relations between entities

DIFFICULTY nodes are typically **UNORDERED**

So we do not want to introduce arbitrary order!

This is a representation issue.

Good representations:
- improve learning performances
- reduce bias

3 types of questions:

Graph level
- does this molecule smell good?

Node level
- identify fake users in a network
- Is for each node

Edge level
- identify friend relationship
- Is for each edge

Naturally: the answer should not depend on representation (chosen order for the nodes,...)
A special case: Deep Sets (NeurIPS 2017)

We have a set of points $x_1, \ldots, x_k \in \mathbb{R}^n$

We want to predict some function $F: \mathbb{R}^{m \times k} \rightarrow \mathbb{R}$

We know that F does NOT depend on order.

We already lost when we wrote x_1, \ldots, x_k: arbitrary order!

Idea:

$$f(x) = \Phi_{\theta}(\sum_{i=1}^{k} \Psi_{\phi}(x_i))$$

$\Phi_{\theta}, \Psi_{\phi}$ are MLPs

\sum is order invariant!

(Btw, so is max and mean)

Now we have a model that only represents unordered functions!
A step back: permutation invariance

We knew that

\[F(Px) = F(x) \quad \text{target function is permutation invariant} \]

So we design a class of models which are permutation invariant:

\[f(Px) = f(x) \]

Invariance for graphs

Key difference: permuting vertices affects edges

\[F(PV, PEP^T) = F(V, E) \quad \text{invariant} \]
\[F(PV, PEP^T) = P^o F(V, E) \quad \text{equivariant} \]
For a node v:

$$N_v = \{ v' : (v,v') \in E \}$$

neighborhood

$$F_{N_v} = \{ \{ F_{v'} : v' \in N_v \} \}$$

multiset

$$g(F_v, F_{N_v}, \ldots)$$

g local function: $g(F_v, F_{N_v})$

g is invariant under permutation of neighbors

(we'll talk about g soon)

Slightly more general: output node features using node + edge features, etc...
GNN: the full model

- Embed
- Node / edge features
- Task-specific output

Stack a number of GNN layers

Constructing the local function \(g \)

\(g \) is called "diffusion" / "propagation" / "message passing"

General definition: **message-passing style**

\[
g(F_v, F_N) = \phi_\theta \left(F_v, \bigoplus_{u \in N_v} \psi_\theta(F_u, F_v) \right)
\]

\(\phi_\theta, \psi_\theta \) are MLPs

\(\bigoplus \) is sum / mean / max
Less general: \(g(F_v, F_{N_v}) = \Phi_{\theta} \left(F_v, \bigoplus_{v'\in N_v} a(v,v') F_{v'} \right) \)

Even less: \(g(F_v, F_{N_v}) = \Phi_{\theta} \left(F_v, \bigoplus_{v'\in N_v} c(v,v') F_{v'} \right) \)

Package:
- Pytorch Geometric

References:
- Distill article (Google)
- ICLR'21 invited talk by Bronstein