A Data Distribution Scheme for Dense Cholesky Factorization on Any Number of Nodes

Olivier BEAUMONT Jean-Alexandre Collin Lionel Eyraud-Dubois Mathieu Vérité

Topal Working Group: November 17th 2022

- 2 Communication Cost
- 3 Symmetric Block Cyclic (SBC) Distribution
- Greedy ColRow & Matching (GCR&M)
- **5** Conclusion and Perspectives

- 2 Communication Cost
- 3 Symmetric Block Cyclic (SBC) Distribution
- Greedy ColRow & Matching (GCR&M)
- **5** Conclusion and Perspectives

Context

Use case: Cholesky factorization

 $M \times M$ tiles symmetric definite positive matrix $\mathbf{A} \rightarrow \text{compute } \mathbf{L}$ such that $\mathbf{A} = \mathbf{L} \cdot \mathbf{L}^{\mathsf{T}}$

- dense matrices: identical tile size and homogeneous workload
- distributed execution using P identical nodes

Communications in distributed settings

- they are a bottleneck for the execution \Rightarrow reducing them improves performance
- promising solution using symmetry of the input: Symmetric Block Cyclic (SBC)

Objective

- design data distributions that reduce the overall volume of communication
- extend SBC solution tailored for symmetric case to any number of nodes

Beaumont, Collin, Eyraud-Dubois, Vérité

Distribution for Cholesky with any Number of Nodes

2 Communication Cost

3 Symmetric Block Cyclic (SBC) Distribution

④ Greedy ColRow & Matching (GCR&M)

5 Conclusion and Perspectives

Communication Scheme in Distributed Cholesky

- Dominant part of the communication: TRSM output → GEMM input.
- Symmetry of **A** ⇒ as many transfers as **different nodes** in the **union** of a row and column.
- The union of row and column of same index: ColRow.
- Criterion for communication reduction: number of different nodes in ColRow: for i ∈ {1,..., M}, it is denoted z_i.

Communication Scheme in Distributed Cholesky

- Dominant part of the communication: TRSM output → GEMM input.
- Symmetry of **A** ⇒ as many transfers as **different nodes** in the **union** of a row and column.
- The union of row and column of same index: ColRow.
- Criterion for communication reduction: number of different nodes in ColRow: for i ∈ {1,..., M}, it is denoted z_i.

Α

Communication Scheme in Distributed Cholesky

- Dominant part of the communication: TRSM output → GEMM input.
- Symmetry of **A** ⇒ as many transfers as **different nodes** in the **union** of a row and column.
- The union of row and column of same index: ColRow.
- Criterion for communication reduction: number of different nodes in ColRow: for i ∈ {1,..., M}, it is denoted z_i.

Communication Cost of Pattern-based Distributions

Figure: 2D BC distribution using P = 9 nodes.

 $\label{eq:square pattern} \begin{array}{l} \mbox{Square pattern} \Rightarrow \mbox{matching ColRow} \ \mbox{in} \\ \mbox{the matrix and the pattern}. \end{array}$

At iteration k:

- pattern replicated vertically $\frac{M-k}{r}$ times
- each node in column k broadcasts to all other nodes in its ColRow

$$\Rightarrow \# \text{comm} = (M-k) \left(\frac{1}{r} \sum_{i=1}^{r} z_i - 1 \right)$$

Distribution for Cholesky with any Number of Nodes

Communication Cost of Pattern-based Distributions

Figure: 2D BC distribution using P = 9 nodes.

 $\label{eq:square pattern} \begin{array}{l} \mbox{Square pattern} \Rightarrow \mbox{matching ColRow} \ \mbox{in} \\ \mbox{the matrix and the pattern}. \end{array}$

At iteration k:

- pattern replicated vertically $\frac{M-k}{r}$ times
- each node in column k broadcasts to all other nodes in its ColRow

$$\Rightarrow \# \text{comm} = (M-k) \left(\frac{1}{r} \sum_{i=1}^{r} z_i - 1 \right)$$

Communication Cost of Pattern-based Distributions

Figure: 2D BC distribution using P = 9 nodes.

Q only depends on the **pattern communication cost** (*i.e.* "average number of different nodes per ColRow ")

$$\bar{z} = \frac{1}{r} \sum_{i=1}^{r} z_i$$

Objective: minimize it.

Symmetric patterns are good candidates: same nodes on rows and columns.

Constraint: pattern must be **balanced** (each node appears the same number of times)

Beaumont, Collin, Eyraud-Dubois, Vérité

Distribution for Cholesky with any Number of Nodes

TOPAL WG - Nov. 17th 2022 7 / 18

2 Communication Cost

3 Symmetric Block Cyclic (SBC) Distribution

4 Greedy ColRow & Matching (GCR&M)

5 Conclusion and Perspectives

BC and SBC Communication Cost

2D BC pattern (P = 9):

$$Y = 3 (= \sqrt{P})$$

#nodes in ColRow 2:
 $5 (= 2\sqrt{P} - 1)$

SBC *basic* pattern
$$(P = 8)$$
:

$$\int r = 4 \ (= \sqrt{2}\sqrt{P})$$

#nodes in ColRow 2: 4 (= $\sqrt{2}\sqrt{P}$)

2D Block Cyclic (BC)

- balanced: each node appears once
- size $r = \sqrt{P}$ (smallest possible with P)

• communication cost:
$$\bar{z} = 2r - 1 = 2\sqrt{P} - 1$$

Symmetric Block Cyclic (SBC)

BC and SBC Communication Cost

2D BC pattern (P = 9):

$$= 3 (= \sqrt{P})$$

#nodes in ColRow 2
 $5 (= 2\sqrt{P} - 1)$

SBC *basic* pattern (P = 8):

r = 4 (=
$$\sqrt{2}\sqrt{P}$$
)
#nodes in ColRow 2:
4 (= $\sqrt{2}\sqrt{P}$)

2D Block Cyclic (BC)

$$\bar{z} = 2\sqrt{P} - 1$$

Symmetric Block Cyclic (SBC)

- $\frac{r(r-1)}{2}$ nodes below diagonal
- $\frac{r}{2}$ nodes on the diagonal $\Rightarrow P = \frac{r^2}{2}$
- balanced: each node appears 2 times
- smallest symmetric version (larger than BC)

communication cost:
$$\bar{z} = r = \sqrt{2}\sqrt{P}$$

BC and SBC Communication Cost

2D BC pattern (P = 9):

$$= 3 (= \sqrt{P})$$

#nodes in ColRow 2
 $5 (= 2\sqrt{P} - 1)$

SBC *basic* pattern
$$(P = 8)$$
:

$$r = 4 (= \sqrt{2}\sqrt{P})$$

#nodes in ColRow 2:
 $4 (= \sqrt{2}\sqrt{P})$

D Block Cyclic (BC)
$$ar{z}=2\sqrt{P}-1$$
ymmetric Block Cyclic (SBC)

$$\bar{z} = \sqrt{2}\sqrt{P}$$

For Cholesky, SBC asymptotically generates a factor of $\sqrt{2}$ fewer communications than BC.

SBC extended version

<u>Variant 1:</u>

*	0	1	3	6
0	◆	2	4	7
1	2	>	5	8
3	4	5	*	9
6	7	8	9	*

	0	0	1	3	6
I	0	2	2	4	7
ſ	1	2	5	5	8
ſ	3	4	5	9	9
ſ	6	7	8	9	6

*	0	1	3	6
0	*	2	4	7
1	2	*	5	8
3	4	5	*	9
6	7	8	9	>

1	0	1	3	6
0	4	2	4	7
1	2	8	5	8
3	4	5	3	9
6	7	8	9	7

• uses
$$P = \frac{r(r-1)}{2}$$
 nodes instead of $\frac{r^2}{2}$

- allocate diagonal to nodes in the ColRow ⇒ pattern **variants**
- \blacksquare alternate pattern variants in the matrix \rightarrow global balancing
- communication cost: $\bar{z} = r 1 \approx \sqrt{2}\sqrt{P}$

Figure: Overall Performance VS. Matrix Size

SBC Performance

Beaumont, Collin, Eyraud-Dubois, Vérité

Distribution for Cholesky with any Number of Nodes

TOPAL WG - Nov. 17th 2022 11 / 18

- 2 Communication Cost
- 3 Symmetric Block Cyclic (SBC) Distribution
- Greedy ColRow & Matching (GCR&M)
- **5** Conclusion and Perspectives

Not available for any P

	SBC		
r	basic ($P = \frac{r^2}{2}$)	extended ($P = \frac{r(r-1)}{2}$)	
3	-	3	
4	8	6	
5	-	10	
6	18	15	
7	-	21	
8	32	28	
9	-	36	
10	50	45	

 \Rightarrow What to do with P = 35?

Communication cost a factor $\sqrt{2}$ higher than theoretical bound.

Pattern 2DBC A SBC • TBC

General ideas

- look for larger symmetric pattern
- minimize z̄ under constraint of almost perfect balancing (excluding diagonal)
- diagonal positions unallocated → used to compensate imbalance

GCR&M algorithm

Input: pattern size *r*, number of nodes *P* **Output:** symmetric square pattern **Two steps:**

- associate each position ↔ subset of possible nodes (greedy procedure)
- allocate each pattern position to a node (*matching*)

TOPAL WG - Nov. 17th 2022 14 / 18

: covered position GCR&M algorithm - step 1

Throughout the execution, maintain:

- set of uncovered pattern positions: U
 (init. all positions, U = {1,...,r}²)
- for each node p, the set of ColRow in which p can appear: A[p]

While $\mathcal{U} \neq \emptyset$:

- (a) select the least loaded node p
- (b) assign to p the ColRow which maximize newly covered positions

(c) update \mathcal{U}

"Reverse" $\mathcal{A}:$ each position \leftrightarrow subset of nodes

CR $\{1, 3, 4, 6, 9\}$ cover 4 new positions

GCR&M algorithm - step 1

Throughout the execution, maintain:

- set of uncovered pattern positions: U
 (init. all positions, U = {1,...,r}²)
- for each node p, the set of ColRow in which p can appear: A[p]

While $\mathcal{U} \neq \emptyset$:

- (a) select the least loaded node p
- (b) assign to p the ColRow which maximize newly covered positions

(c) update \mathcal{U}

"Reverse" $\mathcal{A}:$ each position \leftrightarrow subset of nodes

: covered position

CR $\{2,7\}$ cover 6 new positions

GCR&M algorithm - step 1

Throughout the execution, maintain:

- set of uncovered pattern positions: U
 (init. all positions, U = {1,...,r}²)
- for each node p, the set of ColRow in which p can appear: A[p]

While $\mathcal{U} \neq \emptyset$:

- (a) select the least loaded node p
- (b) assign to p the ColRow which maximize newly covered positions

(c) update \mathcal{U}

"Reverse" $\mathcal{A}:$ each position \leftrightarrow subset of nodes

Beaumont, Collin, Eyraud-Dubois, Vérité

Distribution for Cholesky with any Number of Nodes

GCR&M algorithm - step 2

Association position \leftrightarrow possible nodes: **bipartite graph**

- Build an allocation by finding a maximum cardinality matching in two successive versions of the graph:
 - (a) using $k = \lfloor \frac{r(r-1)}{P} \rfloor$ replications of each node \rightarrow ensure balancing
 - (b) using 1 replication for each node
- \blacksquare Remaining unallocated positions \rightarrow assign to the least loaded possible node

GCR&M algorithm - step 2

Association position \leftrightarrow possible nodes: **bipartite graph**

- Build an allocation by finding a maximum cardinality matching in two successive versions of the graph:

 (a) using k = L^{r(r-1)}/_P replications of each node → ensure balancing
 - (b) using 1 replication for each node
- \blacksquare Remaining unallocated positions \rightarrow assign to the least loaded possible node

Figure: Overall Performance VS. Matrix Size

SBC (extended)	P = 28	<i>r</i> = 8	$\bar{z}=7$
GCR&M	P = 31	<i>r</i> = 31	$\bar{z} = 7.065$

Figure: Overall Performance VS. Matrix Size

SBC (basic)	<i>P</i> = 32	<i>r</i> = 8	$\bar{z} = 8$
GCR&M	<i>P</i> = 35	r = 15	$\bar{z} = 7.4$

Figure: Overall Performance VS. Matrix Size

SBC (extended)	<i>P</i> = 36	<i>r</i> = 9	$\bar{z} = 8$
GCR&M	<i>P</i> = 39	<i>r</i> = 27	$\bar{z} = 7.926$

Figure: Overall Performance VS. Matrix Size

SBC (extended)	P=21	<i>r</i> = 7	$\bar{z} = 6$
GCR&M	<i>P</i> = 23	<i>r</i> = 22	$\bar{z} = 6.045$

- 2 Communication Cost
- 3 Symmetric Block Cyclic (SBC) Distribution
- 4 Greedy ColRow & Matching (GCR&M)

(5) Conclusion and Perspectives

Conclusion and Perspectives

Achievements

- GCR&M easy and fast
- can provide patterns for any P
 "offline"
- achieve as good performance as SBC or better in most case
- allows to make efficient use of any number of resources

Pattern 2DBC A SBC + GCRM

Conclusion and Perspectives

Distribution for Cholesky with any Number of Nodes

Conclusion and Perspectives

GCR&M solution for P = 35:

Beaumont, Collin, Eyraud-Dubois, Vérité

 $r = 15 \approx \sqrt{6P} (\approx 14.491)$

and $\bar{z} = 7.4 \approx \frac{r}{2} (= 7.5)$

Distribution for Cholesky with any Number of Nodes

Difficulties

- GCR&M algorithm is complicated
- better theoretical foundation: how to choose r
- further study of the effect of local imbalance
 - \Rightarrow modify the greedy allocation of the diagonal

Future work

- provide a "database" of communication-efficient patterns for any P
- connect the underlying combinatorial problem with existing references

TOPAL WG - Nov. 17th 2022 17 / 18

Thank you for your attention

Questions?