rotor tutorial

Lionel Eyraud-Dubois, Olivier Beaumont, Alena Shilova, Rémi Duclos

TOPAL Working Group

June 17, 2021
Presentation of **rotor**

Objectives

- Limit the memory used while training Pytorch models
- Drop some intermediate results, recompute them when needed
- **Optimal** selection of results to drop and when to recompute
- Transparent usage

Available as a Python library

https://gitlab.inria.fr/hiepacs/rotor
Contents

Recap of normal Pytorch usage

Simple usage of rotor

How it works

Advanced usage
Create a model

A model is a subclass of `torch.nn.Module`. You just need to implement a `forward()` function which describes the computation done in the model.

```python
import torch
import torch.nn as nn
import torch.nn.functional as F

class MyModel(nn.Module):
    def __init__(self, hidden1=100, hidden2=100):
        super().__init__()
        self.hidden1 = nn.Linear(784, hidden1)
        self.hidden2 = nn.Linear(hidden1, hidden2)
        self.hidden3 = nn.Linear(hidden2, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = self.hidden1(x)
        x = F.relu(x)
        x = self.hidden2(x)
        x = F.relu(x)
        x = self.hidden3(x)
        x = F.softmax(x, dim=0)
        return x
```
Simpler implementation: the Sequential container

```python
def myModel(hidden1=100, hidden2=100):
    list = [
        nn.Flatten(),
        nn.Linear(784, hidden1),
        nn.ReLU(),
        nn.Linear(hidden1, hidden2),
        nn.ReLU(),
        nn.Linear(hidden2, 10),
        nn.Softmax(dim=0)
    ]
    return nn.Sequential(list)
```

Or alternatively:

```python
class MyModel(nn.Sequential):
    def __init__(self, hidden1=100, hidden2=100):
        super().__init__()
        self.add_module("flatten", nn.Flatten())
        self.add_module("hidden1", nn.Linear(784, hidden1))
        self.add_module("relu1", nn.ReLU())
        self.add_module("hidden2", nn.Linear(hidden1, hidden2))
        self.add_module("relu2", nn.ReLU())
        self.add_module("hidden3", nn.Linear(hidden2, 10))
        self.add_module("softmax", nn.Softmax(dim=0))
```
Read the dataset

```
from torchvision import datasets
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader

data = datasets.MNIST(root="data", train=True, download=True, transform=ToTensor())
loader = DataLoader(training_data, batch_size=64)
```

Prepare the model and optimization setting

```
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = MyModel().to(device)
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
epochs = 10
```
Training loop

For all batches in the dataset

- send data to the GPU
- compute the prediction with the model
- compute the loss by comparing with the target
- use backward to produce all gradients
- use the optimizer to update the weights given the gradients
- *(optional)* test the current model on the test dataset after each epoch

```python
for epoch in range(epochs):
    for (input, target) in loader:
        input, target = input.to(device), target.to(device)
        pred = model(input)
        loss_value = loss(pred, target)
        optimizer.zero_grad()
        loss_value.backward()
        optimizer.step()
```
Simple usage of **rotor**

- Just replace your pytorch model by `rotor.Checkpointable(model)`.
- The rest of the training process is unchanged.

```python
import rotor

model = myModel().to(device)
model = rotor.Checkpointable(model)
```

- **rotor** automatically limits the memory usage of your model to what is available on the CUDA device when it is first executed.
- Specify a memory limit (eg 10GB) with `Checkpointable(model, mem_limit=10*2**30)`
- As of now, this limit only includes the memory used by the activations.
Important limitation

- The model given to `rotor` needs to be a `torch.nn.Sequential` model.
- This allows `rotor` to know which computations happen in the `forward` function of the user model.
- Not possible to directly use the models from `torchvision` in `rotor`.

Adapted implementations

`rotor` contains adapted (equivalent) implementations of the `torchvision` models

```python
model = rotor.models.resnet101().to(device)
model = rotor.Checkpointable(model)
```

In most cases, making an implementation based on `Sequential` is not difficult. We will discuss it in more details later.
How it works: dependency graph

- Forward computation: a list of layers F_i, the input of F_{i+1} is the output of F_i.

$$a^0 \rightarrow F^1 \rightarrow a^1 \rightarrow F^2 \rightarrow a^2 \rightarrow \ldots \rightarrow F^{L-1} \rightarrow a^{L-1} \rightarrow F^L \rightarrow a^L \rightarrow F^{L+1} \rightarrow \text{loss}$$

Computing a^2 from a^1:

```python
with torch.no_grad():
    a2 = F2(a1)
```
How it works: dependency graph

- Forward computation: a list of layers F_i, the input of F_{i+1} is the output of F_i.
- Backward computation in reverse: B_i requires the output of F_i and F_{i-1}.

```
Computing $a^2$ from $a^1$:

```torch
with torch.no_grad():
a2 = F2(a1)
```

Computing $B^2$:

```torch
with torch.enable_grad():
a2 = F2(a1)
a2.backward(delta2)
delta1 = a1.grad
```
How it works: dependency graph

- Forward computation: a list of layers $F_i$, the input of $F_{i+1}$ is the output of $F_i$.
- Backward computation in reverse: $B_i$ requires the output of $F_i$ and $F_{i-1}$.

\[
\begin{align*}
F_1 & \rightarrow a^0 & F_2 & \rightarrow a^1 & \ldots & F_{L-1} & \rightarrow a^{L-2} & F_L & \rightarrow a^{L-1} & F_{L+1} & \rightarrow a^L \\
B_1 & \leftarrow \delta^0 & B_2 & \leftarrow \delta^1 & \ldots & B_{L-1} & \leftarrow \delta^{L-2} & B_L & \leftarrow \delta^{L-1} & B_{L+1} & \leftarrow \delta^L \\
\end{align*}
\]

Computing $a^2$ from $a^1$:

```python
with torch.no_grad():
a2 = F2(a1)
```

Computing $B^2$:

```python
with torch.enable_grad():
a2 = F2(a1)
a2.backward(delta2)
deltai = a1.grad
```
First step: Measuring

Before executing the model, **rotor** measures all layers $F_i$, using the first batch. Values measured are:

- execution time of forward and backward
- memory usage of the outputs ($a^i$ and $\bar{a}^i$)
- memory peak during the forward and backward (usage of temporary data)

This can be triggered independently with

```python
model.measure(sample_input)
```
Second step: Optimization

**rotor** describes the computation by a Sequence of operations, among:

- **Fng(i)** computes the output of $F_i$, and forgets the input. Equivalent to:
  ```python
 with torch.no_grad():
 x = F[i](x)
  ```

- **Fck(i)** computes the output of $F_i$, and keeps the input. Equivalent to:
  ```python
 with torch.no_grad():
 y = F[i](x)
  ```

- **Fe(i)** computes the output of $F_i$, enabling gradient computation. Equivalent to:
  ```python
 with torch.enable_grad():
 y = F[i](x)
  ```

- **B(i)** computes the backward of layer $i$. Equivalent to:
  ```python
 y.backward(g)
 g = x.grad
  ```
Second step: Optimization

- Dynamic Programming used to compute an optimal sequence
- Optimal: minimal overhead given a memory limit

\[ F^1 \rightarrow F^2 \rightarrow F^3 \rightarrow F^4 \rightarrow F^5 \rightarrow F^6 \]

\[ B^1 \leftarrow B^2 \leftarrow B^3 \leftarrow B^4 \leftarrow B^5 \leftarrow B^6 \]
Second step: Optimization

- Dynamic Programming used to compute an optimal sequence
- Optimal: **minimal overhead given a memory limit**

\[
\begin{align*}
F^1 & \rightarrow F^2 & F^3 & \rightarrow F^4 & F^5 & \rightarrow F^6 \\
B^1 & \rightarrow B^2 & B^3 & \rightarrow B^4 & B^5 & \rightarrow B^6 \\
\end{align*}
\]

Divide and Conquer: half the memory for each half of the model
Second step: Optimization

- Dynamic Programming used to compute an optimal sequence
- Optimal: **minimal overhead given a memory limit**

![Diagram](image)

Divide and Conquer: half the memory for each half of the model

**Wasteful**: the backward of the first half could use all the memory!
Second step: Optimization

- Dynamic Programming used to compute an optimal sequence
- Optimal: **minimal overhead given a memory limit**

Dynamic Programming: recursive computation of optimal sequence \( \text{opt}(i, j) \)
constrained to storing the input of \( F^i \)
Second step: Optimization

- Dynamic Programming used to compute an optimal sequence
- Optimal: minimal overhead given a memory limit

Dynamic Programming: recursive computation of optimal sequence $\text{opt}(i, j)$ constrained to storing the input of $F^i$

- If we decide to store the input of $k$:
  
  $F^k(i) F^{n}(i + 1) \ldots F^{n}(k - 1) \text{opt}(k, j) \text{opt}(i, k - 1)$
Second step: Optimization

- Dynamic Programming used to compute an optimal sequence
- Optimal: **minimal overhead** given a memory limit

Dynamic Programming: recursive computation of optimal sequence $\text{opt}(i, j)$ constrained to storing the input of $F^i$

- If we decide to store the input of $k$:
  \[ F^{ck}(i) \text{ Fng}(i + 1) \ldots \text{ Fng}(k - 1) \text{ opt}(k, j) \text{ opt}(i, k - 1) \]
- If we decide not to recompute $F^i$:
  \[ \text{Fe}(i) \text{ opt}(i + 1, j) \text{ B}(i) \]
Second step: Optimization

- Dynamic Programming used to compute an optimal sequence
- Optimal: **minimal overhead given a memory limit**

![Diagram of F and B nodes]

**Dynamic Programming:** recursive computation of optimal sequence $\text{opt}(i, j)$ constrained to storing the input of $F_i$

- If we decide to store the input of $k$:
  \[ F_{ck}(i) \ F_{ng}(i+1) \ldots \ F_{ng}(k-1) \ \text{opt}(k, j) \ \text{opt}(i, k-1) \]

- If we decide not to recompute $F^i$:
  \[ F_{e}(i) \ \text{opt}(i+1, j) \ \text{B}(i) \]

Can be triggered with `model.compute_sequence(mem_limit)`
Third step: Execution

Internally, **rotor** defines a custom Pytorch Function, which provides specific forward and backward methods. **rotor** calls the forward method for each application of the model on a Tensor (if the model is in training mode), with the sequence computed as above. The backward method is then automatically called by Pytorch’s autograd mechanism.

From the user’s perspective, all this is transparent. It is enough to perform the usual call:

```python
pred = model(input)
pred.backward(input_gradient)
```
Sequentialization

- **rotor** requires a **Sequential** model as an input
- For most Deep Learning models, this is conceptually not a constraint, but it may require in practice to change the implementation
- Example: the forward function of the ResNet model from torchvision:

```python
def forward(self, x: Tensor) -> Tensor:
 x = self.conv1(x)
 x = self.bn1(x)
 x = self.relu(x)
 x = self.maxpool(x)

 x = self.layer1(x)
 x = self.layer2(x)
 x = self.layer3(x)
 x = self.layer4(x)

 x = self.avgpool(x)
 x = torch.flatten(x, 1)
 x = self.fc(x)

 return x
```

- Can be very easily converted to a **Sequential** implementation
- Available in rotor.models
Recursive Sequential containers

- Layers which are themselves `Sequential` are explored recursively
- From the point of view of `rotor`, the two following models are equivalent

```python
model = nn.Sequential([
 nn.Flatten(),
 nn.Linear(784, hidden1),
 nn.ReLU(),
 nn.Linear(hidden1, hidden2),
 nn.ReLU(),
 nn.Linear(hidden2, 10),
 nn.Softmax(dim=0)
])
```

```python
def linear_and_relu(dim1, dim2):
 return nn.Sequential(nn.Linear(dim1, dim2), nn.ReLU())

model = nn.Sequential([
 nn.Flatten(),
 linear_and_relu(784, hidden1),
 linear_and_relu(hidden1, hidden2),
 nn.Linear(hidden2, 10),
 nn.Softmax(dim=0)
])
```

- More flexibility in the implementation (here, code re-use)
- In the ResNet example, `self.layer1` to `self.layer4` are actually `Sequential`
In-place operations

- Some in-place operations allowed by Pytorch (ReLU for example)
- Very beneficial in terms of memory
- In `rotor`, the first computation in any layer $F_i$ can **not** be in-place
- In-place operations need to be fused with the previous operation
- `rotor` provides a `rotor.models.utils.ReLUAtEnd` to help using in-place ReLU
In-place operations

- Some in-place operations allowed by Pytorch (ReLU for example)
- Very beneficial in terms of memory
- In rotor, the first computation in any layer $F_i$ can **not** be in-place
- In-place operations need to be fused with the previous operation
- **Rotor** provides a `rotor.models.utils.ReLUAtEnd` to help using in-place ReLU

```python
model = nn.Sequential([nn.Flatten(),
n.Linear(784, hidden1),
n.ReLU(inplace=True),
n.Linear(hidden1, hidden2),
n.ReLU(inplace=True),
n.Linear(hidden2, 10),
n.ReLUAtEnd()
])
```
In-place operations

- Some in-place operations allowed by Pytorch (ReLU for example)
- Very beneficial in terms of memory
- In rotor, the first computation in any layer $F_i$ can **not** be in-place
- In-place operations need to be fused with the previous operation
- **rotor** provides a rotor.models.utils.ReLUAtEnd to help using in-place ReLU

```python
from rotor.models.utils import ReLUAtEnd

model = nn.Sequential(
 nn.Flatten(),
 ReLUAtEnd(nn.Linear(784, hidden1)),
 ReLUAtEnd(nn.Linear(hidden1, hidden2)),
 nn.Linear(hidden2, 10),
 nn.Softmax(dim=0)
)
```
That's all folks!

Thank you for your attention

Questions?