
rotor tutorial

Lionel Eyraud-Dubois, Olivier Beaumont, Alena Shilova, Rémi Duclos

TOPAL Working Group

June 17, 2021

Presentation of rotor

Objectives
I Limit the memory used while training Pytorch models
I Drop some intermediate results, recompute them when needed
I Optimal selection of results to drop and when to recompute
I Transparent usage

Available as a Python library
https://gitlab.inria.fr/hiepacs/rotor

https://gitlab.inria.fr/hiepacs/rotor

Contents

Recap of normal Pytorch usage

Simple usage of rotor

How it works

Advanced usage

Create a model

A model is a subclass of torch.nn.Module. You just need to implement a forward()
function which describes the computation done in the model.
import torch
import torch.nn as nn
import torch.nn.functional as F

class MyModel(nn.Module):
def __init__(self , hidden1=100 , hidden2=100):

super ().__init__ ()
self.hidden1 = nn.Linear(784 , hidden1)
self.hidden2 = nn.Linear(hidden1 , hidden2)
self.hidden3 = nn.Linear(hidden2 , 10)

def forward(self , x):
x = x.view(-1, 784)
x = self.hidden1(x)
x = F.relu(x)
x = self.hidden2(x)
x = F.relu(x)
x = self.hidden3(x)
x = F.softmax(x, dim=0)
return x

Simpler implementation: the Sequential container

def myModel(hidden1=100 , hidden2=100):
list = [

nn.Flatten (),
nn.Linear(784 , hidden1),
nn.ReLU(),
nn.Linear(hidden1 , hidden2),
nn.ReLU(),
nn.Linear(hidden2 , 10),
nn.Softmax(dim=0)

]
return nn.Sequential(list)

Or alternatively:
class MyModel(nn.Sequential):

def __init__(self , hidden1=100 , hidden2=100):
super ().__init__ ()
self.add_module("flatten", nn.Flatten ())
self.add_module("hidden1", nn.Linear(784 , hidden1))
self.add_module("relu1", nn.ReLU())
self.add_module("hidden2", nn.Linear(hidden1 , hidden2))
self.add_module("relu2", nn.ReLU())
self.add_module("hidden3", nn.Linear(hidden2 , 10))
self.add_module("softmax", nn.Softmax(dim=0))

Read the dataset

from torchvision import datasets
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader

data = datasets.MNIST(root="data", train=True , download=True , transform=ToTensor ())
loader = DataLoader(training_data , batch_size=64)

Prepare the model and optimization setting
device = torch.device("cuda") if torch.cuda.is_available () else torch.device("cpu")
model = MyModel ().to(device)
loss = nn.CrossEntropyLoss ()
optimizer = torch.optim.Adam(model.parameters (), lr=1e-3)
epochs = 10

Training loop

For all batches in the dataset
I send data to the GPU
I compute the prediction with the model
I compute the loss by comparing with the target
I use backward to produce all gradients
I use the optimizer to update the weights given the gradients
I (optional) test the current model on the test dataset after each epoch

for epoch in range(epochs):
for (input , target) in loader:

input , target = input.to(device), target.to(device)
pred = model(input)
loss_value = loss(pred , target)
optimizer.zero_grad ()
loss_value.backward ()
optimizer.step()

Simple usage of rotor

I Just replace your pytorch model by rotor.Checkpointable(model).
I The rest of the training process is unchanged.

import rotor

model = myModel ().to(device)
model = rotor.Checkpointable(model)

I rotor automatically limits the memory usage of your model to what is available on
the CUDA device when it is first executed.

I Specify a memory limit (eg 10GB) with
Checkpointable(model, mem_limit=10*2**30)

I As of now, this limit only includes the memory used by the activations.

Important limitation

I The model given to rotor needs to be a torch.nn.Sequential model.
I This allows rotor to know which computations happen in the forward function of

the user model.
I Not possible to directly use the models from torchvision in rotor.

Adapted implementations
rotor contains adapted (equivalent) implementations of the torchvision models
model = rotor.models.resnet101 ().to(device)
model = rotor.Checkpointable(model)

In most cases, making an implementation based on Sequential is not difficult. We will
discuss it in more details later.

How it works: dependency graph
I Forward computation: a list of layers Fi , the input of Fi+1 is the output of Fi .

I Backward computation in reverse: Bi requires the output of Fi and Fi−1.

F 1 F 2 · · · F L−1 F L F L+1

B1 B2 B3 · · · BL BL+1

a0 a1 a2 aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0
a1 a2 aL−1 aLā1 ā2 ā3

āL−1 āL loss

Computing a2 from a1:
with torch.no_grad ():

a2 = F2(a1)

Computing B2:
with torch.enable_grad ():

a2 = F2(a1)

a2.backward(delta2)
delta1 = a1.grad

How it works: dependency graph
I Forward computation: a list of layers Fi , the input of Fi+1 is the output of Fi .
I Backward computation in reverse: Bi requires the output of Fi and Fi−1.

F 1 F 2 · · · F L−1 F L F L+1

B1 B2 B3 · · · BL BL+1

a0 a1 a2 aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0
a1 a2 aL−1 aLā1 ā2 ā3

āL−1 āL loss

Computing a2 from a1:
with torch.no_grad ():

a2 = F2(a1)

Computing B2:
with torch.enable_grad ():

a2 = F2(a1)

a2.backward(delta2)
delta1 = a1.grad

How it works: dependency graph
I Forward computation: a list of layers Fi , the input of Fi+1 is the output of Fi .
I Backward computation in reverse: Bi requires the output of Fi and Fi−1.

F 1 F 2 · · · F L−1 F L F L+1

B1 B2 B3 · · · BL BL+1

a0 a1 a2 aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0
a1 a2 aL−1 aLā1 ā2 ā3

āL−1 āL loss

Computing a2 from a1:
with torch.no_grad ():

a2 = F2(a1)

Computing B2:
with torch.enable_grad ():

a2 = F2(a1)

a2.backward(delta2)
delta1 = a1.grad

First step: Measuring

Before executing the model, rotor measures all layers Fi , using the first batch. Values
measured are:
I execution time of forward and backward
I memory usage of the outputs (ai and āi)
I memory peak during the forward and backward (usage of temporary data)

This can be triggered independently with
model.measure(sample_input)

Second step: Optimization

rotor describes the computation by a Sequence of operations, among:
I Fng(i) computes the output of Fi , and forgets the input. Equivalent to:

with torch.no_grad ():
x = F[i](x)

I Fck(i) computes the output of Fi , and keeps the input. Equivalent to:
with torch.no_grad ():

y = F[i](x)

I Fe(i) computes the output of Fi , enabling gradient computation. Equivalent to:
with torch.enable_grad ():

y = F[i](x)

I B(i) computes the backward of layer i . Equivalent to:
y.backward(g)
g = x.grad

Second step: Optimization

I Dynamic Programming used to compute an optimal sequence
I Optimal: minimal overhead given a memory limit

F 1 F 2 F 3 F 4 F 5 F 6

B1 B2 B3 B4 B5 B6

Second step: Optimization

I Dynamic Programming used to compute an optimal sequence
I Optimal: minimal overhead given a memory limit

F 1 F 2 F 3 F 4 F 5 F 6

B1 B2 B3 B4 B5 B6

Divide and Conquer: half the memory for each half of the model

Second step: Optimization

I Dynamic Programming used to compute an optimal sequence
I Optimal: minimal overhead given a memory limit

F 1 F 2 F 3 F 4 F 5 F 6

B1 B2 B3 B4 B5 B6

Divide and Conquer: half the memory for each half of the model
Wasteful: the backward of the first half could use all the memory!

Second step: Optimization

I Dynamic Programming used to compute an optimal sequence
I Optimal: minimal overhead given a memory limit

F 1 F 2 F 3 F 4 F 5 F 6

B1 B2 B3 B4 B5 B6

Dynamic Programming: recursive computation of optimal sequence opt(i , j)
constrained to storing the input of F i

I If we decide to store the input of k :
Fck(i) Fng(i + 1) . . . Fng(k − 1) opt(k , j) opt(i , k − 1)

I If we decide not to recompute F i :
Fe(i) opt(i + 1, j) B(i)

Can be triggered with model.compute_sequence(mem_limit)

Second step: Optimization

I Dynamic Programming used to compute an optimal sequence
I Optimal: minimal overhead given a memory limit

F 1 F 2 F 3 F 4 F 5 F 6

B1 B2 B3 B4 B5 B6

Dynamic Programming: recursive computation of optimal sequence opt(i , j)
constrained to storing the input of F i

I If we decide to store the input of k :
Fck(i) Fng(i + 1) . . . Fng(k − 1) opt(k , j) opt(i , k − 1)

I If we decide not to recompute F i :
Fe(i) opt(i + 1, j) B(i)

Can be triggered with model.compute_sequence(mem_limit)

Second step: Optimization

I Dynamic Programming used to compute an optimal sequence
I Optimal: minimal overhead given a memory limit

F 1 F 2 F 3 F 4 F 5 F 6

B1 B2 B3 B4 B5 B6

Dynamic Programming: recursive computation of optimal sequence opt(i , j)
constrained to storing the input of F i

I If we decide to store the input of k :
Fck(i) Fng(i + 1) . . . Fng(k − 1) opt(k , j) opt(i , k − 1)

I If we decide not to recompute F i :
Fe(i) opt(i + 1, j) B(i)

Can be triggered with model.compute_sequence(mem_limit)

Second step: Optimization

I Dynamic Programming used to compute an optimal sequence
I Optimal: minimal overhead given a memory limit

F 1 F 2 F 3 F 4 F 5 F 6

B1 B2 B3 B4 B5 B6

Dynamic Programming: recursive computation of optimal sequence opt(i , j)
constrained to storing the input of F i

I If we decide to store the input of k :
Fck(i) Fng(i + 1) . . . Fng(k − 1) opt(k , j) opt(i , k − 1)

I If we decide not to recompute F i :
Fe(i) opt(i + 1, j) B(i)

Can be triggered with model.compute_sequence(mem_limit)

Third step: Execution

Internally, rotor defines a custom Pytorch Function, which provides specific forward
and backward methods. rotor calls the forward method for each application of the
model on a Tensor (if the model is in training mode), with the sequence computed as
above. The backward method is then automatically called by Pytorch’s autograd
mechanism.

From the user’s perspective, all this is transparent. It is enough to perform the usual
call:
pred = model(input)
pred.backward(input_gradient)

Sequentialization
I rotor requires a Sequential model as an input
I For most Deep Learning models, this is conceptually not a constraint, but it may

require in practice to change the implementation
I Example: the forward function of the ResNet model from torchvision:

def forward(self , x: Tensor) -> Tensor:
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)

x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)

return x

I Can be very easily converted to a Sequential implementation
I Available in rotor.models

Recursive Sequential containers
I Layers which are themselves Sequential are explored recursively
I From the point of view of rotor, the two following models are equivalent

model = nn.Sequential([
nn.Flatten (),
nn.Linear(784 , hidden1),
nn.ReLU(),
nn.Linear(hidden1 , hidden2),
nn.ReLU(),
nn.Linear(hidden2 , 10),
nn.Softmax(dim=0)

])

def linear_and_relu(dim1 , dim2):
return nn.Sequential(nn.Linear(dim1 , dim2), nn.ReLU())

model = nn.Sequential([
nn.Flatten (),
linear_and_relu(784 , hidden1),
linear_and_relu(hidden1 , hidden2),
nn.Linear(hidden2 , 10),
nn.Softmax(dim=0)

])

I More flexibility in the implementation (here, code re-use)
I In the ResNet example, self.layer1 to self.layer4 are actually Sequential

In-place operations

I Some in-place operations allowed by Pytorch (ReLU for example)
I Very beneficial in terms of memory

I In rotor, the first computation in any layer Fi can not be in-place
I In-place operations need to be fused with the previous operation
I rotor provides a rotor.models.utils.ReLUAtEnd to help using in-place ReLU

In-place operations

I Some in-place operations allowed by Pytorch (ReLU for example)
I Very beneficial in terms of memory

I In rotor, the first computation in any layer Fi can not be in-place
I In-place operations need to be fused with the previous operation
I rotor provides a rotor.models.utils.ReLUAtEnd to help using in-place ReLU

model = nn.Sequential([
nn.Flatten (),
nn.Linear(784 , hidden1),
nn.ReLU(inplace=True),
nn.Linear(hidden1 , hidden2),
nn.ReLU(inplace=True),
nn.Linear(hidden2 , 10),
nn.Softmax(dim=0)

])

In-place operations

I Some in-place operations allowed by Pytorch (ReLU for example)
I Very beneficial in terms of memory

I In rotor, the first computation in any layer Fi can not be in-place
I In-place operations need to be fused with the previous operation
I rotor provides a rotor.models.utils.ReLUAtEnd to help using in-place ReLU

from rotor.models.utils import ReLUAtEnd

model = nn.Sequential([
nn.Flatten (),
ReLUAtEnd(nn.Linear(784 , hidden1)),
ReLUAtEnd(nn.Linear(hidden1 , hidden2)),
nn.Linear(hidden2 , 10),
nn.Softmax(dim=0)

])

That’s all folks!

Thank you for your attention

Questions?

	Recap of normal Pytorch usage
	Simple usage of rotor
	How it works
	Advanced usage

