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Motivations and ingredients

1 Adaptivity and higher order finite elements

[P. Kůs, P. Šoĺın, D. Andřs, Arbitrary-level hanging

nodes for adaptive hp-FEM approximations in 3D,

JCAM, 270, pp. 121–133, 2014.]

2 Nonoverlapping domain decomposition and parallel computing

[B. Soused́ık, J. Š́ıstek, and J. Mandel, Adaptive-Multilevel

BDDC and its parallel implementation, Computing, 95 (12),

pp. 1087–1119, 2013.]

3 Immersed boundary FEM

[T. Rüberg, F. Cirak, and J.M. Garcia-Aznar, An unstructured immersed finite

element method for nonlinear solid mechanics, Advanced Modeling and Simulation

in Engineering Sciences, 2016.]
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The p4est library

C. Burstedde, L. Wilcox, and O. Ghattas, p4est: Scalable Algorithms for Parallel

Adaptive Mesh Refinement on Forests of Octrees, SIAM J. Sci. Comput., 3 (33), pp.

1103–1133, 2011.
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Nonstandard properties of the mesh

1 Hanging nodes

Hanging nodes have to be eliminated
They can also appear at the subdomain interface

2 Shape of the subdomains

Subdomains might be disconnected or only loosely coupled (e.g. by
one node in elasticity)
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Adding rules to the game

Assumptions on the mesh

only level-1 hanging nodes allowed

2:1 rule

equal order shape functions, i.e. no hp, but higher p fine

O.K. not O.K.
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Solving the linear system

An abstract problem

u ∈ U : a(u, v) = 〈f, v〉 ∀v ∈ U

a (·, ·) symmetric positive definite form on U

〈·, ·〉 is inner product on U

U is finite dimensional space (typically finite element functions)

Matrix form

u ∈ U : Au = f

A symmetric positive definite matrix on U

A large, sparse, condition number κ(A) = λmax

λmin
= O(1/h2)
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Nonoverlapping DD methods

idea goes back to substructuring – a trick used in seventies to fit
larger FE problems into memory

Ω1 Ω2

Γ

Ω1, Ω2 . . . subdomains (substructures)
Γ . . . interface

unknowns at interface are shared by more subdomains, remaining
(interior) unknowns belong to a single subdomain

the first step is reduction of the problem to the interface Γ

Pavel Kůs DD solver for immersed boundary FEM 11 / 32



Nonoverlapping DD methods

idea goes back to substructuring – a trick used in seventies to fit
larger FE problems into memory

Ω1 Ω2

Γ

Ω1, Ω2 . . . subdomains (substructures)
Γ . . . interface

unknowns at interface are shared by more subdomains, remaining
(interior) unknowns belong to a single subdomain

the first step is reduction of the problem to the interface Γ
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Formation of the interface problem

recall the matrix problem
Au = f

reorder unknowns so that those at interior u1
o and u2

o are first, then
interface uΓ  A1

oo A1
oΓ

A2
oo A2

oΓ

A1
Γo A2

Γo AΓΓ

 u1
o

u2
o

uΓ

 =

 f1
o

f2
o

fΓ


eliminate interior unknowns – subdomain by subdomain = in
parallel  A1

oo A1
oΓ

A2
oo A2

oΓ

S

 u1
o

u2
o

uΓ

 =

 f1
o

f2
o

g


S =

∑
assembly

AiΓΓ −AiΓo(Aioo)
−1
AioΓ =

∑
assembly

Si

g =
∑

assembly

f iΓ −AiΓo(Aioo)
−1
f io =

∑
assembly

gi
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Iterative substructuring

interface Γ

Reduced (Schur complement) problem on interface Γ

SuΓ = g

S =
∑

assembly

Ai
ΓΓ −Ai

Γo(A
i
oo)

−1
Ai

oΓ =
∑

assembly

Si

g =
∑

assembly

f i
Γ −Ai

Γo(A
i
oo)

−1
f i
o =

∑
assembly

gi

solved by PCG
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A practical algorithm of iterative substructuring
In setup:

1 factorize matrix Aoo (block diagonal = in parallel)
2 form condensed right-hand side by solving

Aooh = fo,

and inserting g = fΓ −AΓoh.

In each iteration, for given p construct Sp as[
Aoo AoΓ
AΓo AΓΓ

] [
w
p

]
=

[
0
Sp

]
1 Solve (in parallel) discrete Dirichlet problem

Aoow = −AoΓp

2 Get Sp (in parallel) as

Sp = AΓow + AΓΓp

After iterations, for given uΓ, resolve (in parallel) interior
unknowns by back-substitution in

Aoouo = fo −AoΓuΓ
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The BDDC preconditioner

U ⊂ W̃ ⊂ W
continuous continuous no continuity
at all nodes at selected at interface
at interface coarse dofs

Balancing Domain Decomposition based on Constraints
[Dohrmann (2003)], [Cros (2003)], [Fragakis, Papadrakakis (2003)]

continuity at corners, and of averages (arithmetic or weighted) over
edges or faces considered

enough constraints to fix floating subdomains — a (·, ·) symmetric

positive definite on W̃

Variational form of MBDDC : r 7−→ u

w ∈ W̃ : a (w, z) = 〈r, Ez〉 ∀z ∈ W̃
u = Ew
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The multilevel BDDC preconditioner

Local energy minimization problems

On each subdomain – coarse degrees of freedom – basis functions Ψi –
prescribed values of coarse degrees of freedom, minimal energy elsewhere,[

Ai CiT

Ci 0

] [
Ψi

Λi

]
=

[
0
I

]
.

Ai . . . local subdomain stiffness matrix

Ci . . . matrix of constraints – selects
unknowns into coarse degrees of freedom

Matrix of coarse problem AC assembled from
local matrices ACi = ΨiTAiΨi= −Λi.

coarse basis fun.

Pavel Kůs DD solver for immersed boundary FEM 16 / 32



Disconnected and loosely coupled subdomains

Assumption on solvability of local saddle-point systems

nullAi ∩ nullCi = {0}

invertibility of [
Ai CiT

Ci 0

]
follows, see e.g. [Benzi, Golub, Liesen (2005)]

satisfied if enough constraints on continuity in W̃ are selected

Disconnected and loosely coupled subdomains

more constrains needed in Ci

more coarse basis functions Ψi

Pavel Kůs DD solver for immersed boundary FEM 17 / 32



Disconnected and loosely coupled subdomains

local nullspaces more complicated

more constrains needed for each subdomain

detect graph components of subdomain mesh

P. Kůs, J. Š́ıstek. Coupling parallel adaptive mesh refinement with a nonoverlapping

domain decomposition solver. Advances in Engineering Software, 110:34–54, 2017.
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One step of BDDC
Get residual at interface nodes r

(k)
Γ = g − Su(k)

Γ and produce

preconditioned residual z
(k)
Γ = MBDDCr

(k)
Γ by

1 1. Distribution of residual
subdomain problems (global) coarse problem

for i = 1, . . . , N

ri = EiT r
(k)
Γ

rC =

N∑
i=1

RiTC Ψi∗TEiT r
(k)
Γ

2 Correction of solution[
Ai CiT

Ci 0

] [
zi

µi

]
=

[
ri

0

]
ACuC = rC

3 Combination of subdomain and coarse corrections

z
(k)
Γ =

N∑
i=1

Ei
(
ΨiRiCuC + zi

)
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Pavel Kůs DD solver for immersed boundary FEM 19 / 32



One step of BDDC
Get residual at interface nodes r

(k)
Γ = g − Su(k)

Γ and produce

preconditioned residual z
(k)
Γ = MBDDCr

(k)
Γ by

1 1. Distribution of residual
subdomain problems (global) coarse problem

for i = 1, . . . , N

ri = EiT r
(k)
Γ

rC =

N∑
i=1

RiTC Ψi∗TEiT r
(k)
Γ

2 Correction of solution[
Ai CiT

Ci 0

] [
zi

µi

]
=

[
ri

0

]
ACuC = rC

3 Combination of subdomain and coarse corrections

z
(k)
Γ =

N∑
i=1

Ei
(
ΨiRiCuC + zi

)
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Immersed boundary FEM

an approach to avoiding mesh generation in FEM simulations

robustness for geometric resolution through implicit description of
the boundary

Nonstandard features compared to FEM

weak enforcement of Dirichlet boundary conditions

nonstandard quadrature rules

ill-conditioning of stiffness matrices due to cut cells

T. Rüberg, F. Cirak, and J.M. Garcia-Aznar, An unstructured immersed finite element

method for nonlinear solid mechanics, Advanced Modeling and Simulation in

Engineering Sciences, 2016.
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Weak enforcement of the boundary conditions

u ∈ H1(Ω) : a(u, v) = l(v) ∀v ∈ H1(Ω)

Penalty method

a(u, v) =

∫
Ω

∇u · ∇v dΩ+

∫
ΓD

γuv dΓ

l(v) =

∫
Ω

fv dΩ +

∫
ΓN

tv dΓ+

∫
ΓD

γuv dΓ

Nitsche method

a(u, v) =

∫
Ω

∇u · ∇v dΩ−
∫

ΓD

(n · ∇u)v dΓ

−
∫

ΓD

(n · ∇v)u dΓ +

∫
ΓD

γuv dΓ

l(v) =

∫
Ω

fv dΩ +

∫
ΓN

tv dΓ−
∫

ΓD

(n · ∇v)u dΓ +

∫
ΓD

γuv dΓ

γ = γ0α/h
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Implementation

Parallel FEM solver with AMR and embedded domains

experimental in-house code

implicit geometry description

C++ with MPI

p4est mesh manager for AMR

rebalancing based on
Z-curves

ANSI C + MPI

open-source (GPL)

scalability reported for
1e5–1e6 cores

http://www.p4est.org

BDDCML equation solver

Adaptive-Multilevel BDDC

Fortran 95 + MPI

open-source (LGPL)

current version 2.5 (8/6/’15)

tested on up to 65e3 cores
and 2e9 unknowns

http://www.math.cas.cz/~sistek/

software/bddcml.html

Pavel Kůs DD solver for immersed boundary FEM 23 / 32
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Adaptive mesh refinement

Internal layer benchmark

−4u = f on (0, 1)d

u = arctan
(
s ·
(
r − π

3

))

solution exhibits sharp internal layer

r is a distance from a given point

s controls “steepness” of the layer

Pavel Kůs DD solver for immersed boundary FEM 25 / 32



Adaptivity in 3D on 8 subdomains

Adaptivity tested for element orders 1-4 (showed order 1)

Guided by exact solution, using H1 semi-norm for error calculation

Iteration 3, mesh and solution
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Adaptivity in 3D on 8 subdomains

Adaptivity tested for element orders 1-4 (showed order 1)

Guided by exact solution, using H1 semi-norm for error calculation

Iteration 5, mesh and solution
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Adaptivity in 3D on 8 subdomains

Adaptivity tested for element orders 1-4 (showed order 1)

Guided by exact solution, using H1 semi-norm for error calculation

Iteration 8, mesh and solution
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Adaptivity in 3D, 3-level BDDC, linear elements

Adaptive mesh refinement

subs. size loc. size PCG its. time set-up [s] time PCG [s]
2048/46 4913 2 9 2.8 1.1
2048/46 8594 4 29 0.55 1.6
2048/46 2.5·104 12 53 0.6 3
2048/46 1.3·105 63 60 0.67 3.5
2048/46 7.0·105 342 54 0.89 3.5
2048/46 3.0·106 1445 56 1.6 4.8
2048/46 1.4·107 6623 55 2.9 10
2048/46 6.4·107 3.1·104 55 10 33
2048/46 2.9·108 1.4·105 56 61 130
2048/46 1.3·109 6.3·105 51 565 521

run on Salomon@IT4I

P. Kůs, J. Š́ıstek. Coupling parallel adaptive mesh refinement with a nonoverlapping

domain decomposition solver. Advances in Engineering Software, 110:34–54, 2017.
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Adaptivity in 3D, 3-level BDDC, convergence order

Illustrative mesh,
100K DOFs,

20 subdomains,
shown 1 – 20
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Illustrative mesh,
100K DOFs,

20 subdomains,
shown 1 – 18
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Adaptivity in 3D, 3-level BDDC, convergence order

Illustrative mesh,
100K DOFs,

20 subdomains,
shown 1 – 16
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Adaptivity in 3D, 3-level BDDC, convergence order

Illustrative mesh,
100K DOFs,

20 subdomains,
shown 1 – 14
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Adaptivity in 3D, 3-level BDDC, convergence order

Illustrative mesh,
100K DOFs,

20 subdomains,
shown 1 – 12
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Adaptivity in 3D, 3-level BDDC, convergence order

Illustrative mesh,
100K DOFs,

20 subdomains,
shown 1 – 10
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Adaptivity in 3D, 3-level BDDC, convergence order

Illustrative mesh,
100K DOFs,

20 subdomains,
shown 1 – 8.
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Our use of direct solver
Two matrix factorizations

50% runtime (of the solver itself) spent in matrix factorizations,
another 30% in back substitions (in iterations).

We factorize two matrices on each subdomain. First Aoo with inner
DOFs, the other with approx. 20% extra rows and columns, a saddle
point problem. The first matrix is a submatrix of the second one.

For Poisson problem and linear elasticity we use Cholesky and
LDLT decompositions, respectively. LU with pivoting used for
non-symmetric problems.

 Aoo AoΓ 0
AΓo AΓΓ CTΓ

0 CΓ 0


We need to invert Aoo and the 3 by 3 block matrix on each subdom.
For eliptic problems, Aoo is positive definite, the first 2 by 2 block
matrix is positive semidefinite and the whole 3 by 3 block matrix is a
saddle point problem.
Only the part of Ci corresponding to the interface Γ is nonzero (CΓ).
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Our use of direct solver

Distibution of subdomains

Currently we run pure MPI with one subdomain per MPI rank,
trying to balance the subdomain sizes.

This is sometimes difficult to achieve when using the parallel
adaptivity of the mesh and many subdomain components.

Having variable number of subdomains per node is appealing from
various reasons, but would require a major code refactoring.
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Contacts

Thank you for your attention!
Pavel Kůs

kus@math.cas.cz
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Institute of Mathematics, Czech Academy of Sciences, Prague

BDDCML library
http://users.math.cas.cz/~sistek/software/bddcml.html
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