Towards a parallel domain decomposition solver for immersed boundary finite element method

Pavel Kůs ${ }^{1}$
joint work with
Jakub Šístek ${ }^{1}$, Fehmi Cirak ${ }^{2}$, and Eky Febrianto ${ }^{2}$
${ }^{1}$ Institute of Mathematics, Czech Academy of Sciences, Prague
${ }^{2}$ Department of Engineering, University of Cambridge

May 26, 2021

Outline

Introduction

Parallel adaptive mesh refinement

Multilevel BDDC method

Immersed boundary FEM

Numerical results

Conclusion and outlooks

Outline

Introduction

Parallel adaptive mesh refinement

Multilevel BDDC method

Immersed boundary FEM

Numerical results

Conclusion and outlooks

1 Adaptivity and higher order finite elements
[P. Kůs, P. Šolín, D. Andrš, Arbitrary-level hanging nodes for adaptive hp-FEM approximations in 3D, JCAM, 270, pp. 121-133, 2014.]

2 Nonoverlapping domain decomposition and parallel computing
[B. Sousedík, J. Šístek, and J. Mandel, Adaptive-Multilevel BDDC and its parallel implementation, Computing, 95 (12), pp. 1087-1119, 2013.]

3 Immersed boundary FEM

[T. Rüberg, F. Cirak, and J.M. Garcia-Aznar, An unstructured immersed finite element method for nonlinear solid mechanics, Advanced Modeling and Simulation in Engineering Sciences, 2016.]

Outline

Introduction

Parallel adaptive mesh refinement

Multilevel BDDC method

Immersed boundary FEM

Numerical results

Conclusion and outlooks

C. Burstedde, L. Wilcox, and O. Ghattas, p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees, SIAM J. Sci. Comput., 3 (33), pp. 1103-1133, 2011.

1 Hanging nodes

- Hanging nodes have to be eliminated
- They can also appear at the subdomain interface

2 Shape of the subdomains

- Subdomains might be disconnected or only loosely coupled (e.g. by one node in elasticity)

Adding rules to the game

Assumptions on the mesh

- only level-1 hanging nodes allowed
- 2:1 rule
- equal order shape functions, i.e. no $h p$, but higher p fine

O.K.

not O.K.

Outline

Introduction

Parallel adaptive mesh refinement

Multilevel BDDC method

Immersed boundary FEM

Numerical results

Conclusion and outlooks

An abstract problem

$$
u \in U: a(u, v)=\langle f, v\rangle \quad \forall v \in U
$$

- $a(\cdot, \cdot)$ symmetric positive definite form on U
- $\langle\cdot, \cdot\rangle$ is inner product on U
- U is finite dimensional space (typically finite element functions)
- A symmetric positive definite matrix on U
- A large, sparse, condition number $\kappa(A)=\frac{\lambda_{n}}{\lambda^{n}}=O\left(1 / h^{2}\right)$

An abstract problem

$$
u \in U: a(u, v)=\langle f, v\rangle \quad \forall v \in U
$$

- $a(\cdot, \cdot)$ symmetric positive definite form on U
- $\langle\cdot, \cdot\rangle$ is inner product on U
- U is finite dimensional space (typically finite element functions)

Matrix form

$$
u \in U: A u=f
$$

- A symmetric positive definite matrix on U
- A large, sparse, condition number $\kappa(A)=\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}=\mathcal{O}\left(1 / h^{2}\right)$
- idea goes back to substructuring - a trick used in seventies to fit larger FE problems into memory

- $\Omega_{1}, \Omega_{2} \ldots$ subdomains (substructures)
- $\Gamma \ldots$ interface
- unknowns at interface are shared by more subdomains, remaining (interior) unknowns belong to a single subdomain
- the first step is reduction of the problem to the interface I
- idea goes back to substructuring - a trick used in seventies to fit larger FE problems into memory

- $\Omega_{1}, \Omega_{2} \ldots$ subdomains (substructures)
- Γ. . . interface
- unknowns at interface are shared by more subdomains, remaining (interior) unknowns belong to a single subdomain
- the first step is reduction of the problem to the interface I
- idea goes back to substructuring - a trick used in seventies to fit larger FE problems into memory

- $\Omega_{1}, \Omega_{2} \ldots$ subdomains (substructures)
- Γ. . . interface

■ unknowns at interface are shared by more subdomains, remaining (interior) unknowns belong to a single subdomain

- the first step is reduction of the problem to the interface Γ

Formation of the interface problem

- recall the matrix problem

$$
A u=f
$$

- reorder unknowns so that those at interior u_{o}^{1} and u_{o}^{2} are first, then interface u_{Γ}

- eliminate interior unknowns - subdomain by subdomain $=$ in parallel

> assembly
assembly
assembly
assembly

- recall the matrix problem

$$
A u=f
$$

- reorder unknowns so that those at interior u_{o}^{1} and u_{o}^{2} are first, then interface u_{Γ}

$$
\left[\begin{array}{ccc}
A_{o o}^{1} & & A_{o \Gamma}^{1} \\
A_{\Gamma o}^{1} & A_{o o}^{2} & A_{\sigma \Gamma}^{2} \\
A_{\Gamma \Gamma}^{2} & A_{\Gamma \Gamma}
\end{array}\right]\left[\begin{array}{l}
u_{o}^{1} \\
u_{o}^{2} \\
u_{\Gamma}
\end{array}\right]=\left[\begin{array}{c}
f_{o}^{1} \\
f_{o}^{2} \\
f_{\Gamma}
\end{array}\right]
$$

- eliminate interior unknowns - subdomain by subdomain $=$ in parallel
- recall the matrix problem

$$
A u=f
$$

- reorder unknowns so that those at interior u_{o}^{1} and u_{o}^{2} are first, then interface u_{Γ}

$$
\left[\begin{array}{ccc}
A_{o o}^{1} & & A_{o \Gamma}^{1} \\
& A_{o o}^{2} & A_{o \Gamma}^{2} \\
A_{\Gamma o}^{1} & A_{\Gamma o}^{2} & A_{\Gamma \Gamma}
\end{array}\right]\left[\begin{array}{c}
u_{o}^{1} \\
u_{o}^{2} \\
u_{\Gamma}
\end{array}\right]=\left[\begin{array}{c}
f_{o}^{1} \\
f_{o}^{2} \\
f_{\Gamma}
\end{array}\right]
$$

- eliminate interior unknowns - subdomain by subdomain $=$ in parallel

$$
\begin{aligned}
& {\left[\begin{array}{lll}
A_{o o}^{1} & & A_{o \Gamma}^{1} \\
& A_{o o}^{2} & A_{o \Gamma}^{2} \\
& & S
\end{array}\right]\left[\begin{array}{c}
u_{o}^{1} \\
u_{o}^{2} \\
u_{\Gamma}
\end{array}\right]=\left[\begin{array}{c}
f_{o}^{1} \\
f_{o}^{2} \\
g
\end{array}\right]} \\
& S=\sum_{\text {assembly }} A_{\Gamma \Gamma}^{i}-A_{\Gamma o}^{i}\left(A_{o o}^{i}\right)^{-1} A_{o \Gamma}^{i}=\sum_{\text {assembly }} S^{i} \\
& g=\sum_{\text {assembly }} f_{\Gamma}^{i}-A_{\Gamma o}^{i}\left(A_{o o}^{i}\right)^{-1} f_{o}^{i}=\sum_{\text {assembly }} g^{i}
\end{aligned}
$$

- interface Γ

Reduced (Schur complement) problem on interface Γ

- solved by PCG

- interface Γ

Reduced (Schur complement) problem on interface Γ

$$
\begin{gathered}
S u_{\Gamma}=g \\
S=\sum_{\text {assembly }} A_{\Gamma \Gamma}^{i}-A_{\Gamma o}^{i}\left(A_{o o}^{i}\right)^{-1} A_{o \Gamma}^{i}=\sum_{\text {assembly }} S^{i} \\
g=\sum_{\text {assembly }} f_{\Gamma}^{i}-A_{\Gamma o}^{i}\left(A_{o o}^{i}\right)^{-1} f_{o}^{i}=\sum_{\text {assembly }} g^{i}
\end{gathered}
$$

- solved by PCG

- interface Γ

Reduced (Schur complement) problem on interface Γ

$$
\begin{gathered}
S u_{\Gamma}=g \\
S=\sum_{\text {assembly }} A_{\Gamma \Gamma}^{i}-A_{\Gamma o}^{i}\left(A_{o o}^{i}\right)^{-1} A_{o \Gamma}^{i}=\sum_{\text {assembly }} S^{i} \\
g=\sum_{\text {assembly }} f_{\Gamma}^{i}-A_{\Gamma o}^{i}\left(A_{o o}^{i}\right)^{-1} f_{o}^{i}=\sum_{\text {assembly }} g^{i}
\end{gathered}
$$

- solved by PCG

A practical algorithm of iterative substructuring

- In setup:

1 factorize matrix $A_{o o}$ (block diagonal $=$ in parallel)
$\sqrt{2}$ form condensed right-hand side by solving

$$
A_{o o} h=f_{o},
$$

and inserting $g=f_{\Gamma}-A_{\Gamma \circ} h$.

- In each iteration, for given p construct $S p$ as

1 Solve (in parallel) discrete Dirichlet problem

2 Get $S p$ (in parallel) as

- After iterations, for given u_{Γ}, resolve (in parallel) interior unknowns by back-substitution in

A practical algorithm of iterative substructuring

- In setup:

1 factorize matrix $A_{o o}$ (block diagonal $=$ in parallel)
2 form condensed right-hand side by solving

$$
A_{o o} h=f_{o},
$$

and inserting $g=f_{\Gamma}-A_{\Gamma \circ} h$.
■ In each iteration, for given p construct $S p$ as

$$
\left[\begin{array}{ll}
A_{o o} & A_{o \Gamma} \\
A_{Г o} & A_{\Gamma \Gamma}
\end{array}\right]\left[\begin{array}{l}
w \\
p
\end{array}\right]=\left[\begin{array}{c}
0 \\
S p
\end{array}\right]
$$

1 Solve (in parallel) discrete Dirichlet problem

$$
A_{o o} w=-A_{o \Gamma} p
$$

$\sqrt{2}$ Get $S p$ (in parallel) as

$$
S p=A_{\Gamma o} w+A_{\Gamma \Gamma} p
$$

- After iterations, for given u_{Γ}, resolve (in parallel) interior unknowns by back-substitution in

A practical algorithm of iterative substructuring

- In setup:

1 factorize matrix $A_{o o}$ (block diagonal $=$ in parallel)
$\sqrt{2}$ form condensed right-hand side by solving

$$
A_{o o} h=f_{o}
$$

and inserting $g=f_{\Gamma}-A_{\Gamma о} h$.
■ In each iteration, for given p construct $S p$ as

$$
\left[\begin{array}{ll}
A_{o o} & A_{o \Gamma} \\
A_{Г o} & A_{\Gamma \Gamma}
\end{array}\right]\left[\begin{array}{l}
w \\
p
\end{array}\right]=\left[\begin{array}{c}
0 \\
S p
\end{array}\right]
$$

1 Solve (in parallel) discrete Dirichlet problem

$$
A_{o o} w=-A_{o \Gamma} p
$$

2 Get $S p$ (in parallel) as

$$
S p=A_{\Gamma o} w+A_{\text {Гг }} p
$$

- After iterations, for given u_{Γ}, resolve (in parallel) interior unknowns by back-substitution in

$$
A_{o o} u_{o}=f_{o}-A_{o \Gamma} u_{\Gamma}
$$

The BDDC preconditioner

- Balancing Domain Decomposition based on Constraints [Dohrmann (2003)], [Cros (2003)], [Fragakis, Papadrakakis (2003)]
- continuity at corners, and of averages (arithmetic or weighted) over edges or faces considered
- enough constraints to fix floating subdomains - $a(\cdot, \cdot)$ symmetric positive definite on \widetilde{W}

The BDDC preconditioner

continuous at all nodes at interface
 \subset

no continuity at interface

- Balancing Domain Decomposition based on Constraints [Dohrmann (2003)], [Cros (2003)], [Fragakis, Papadrakakis (2003)]
- continuity at corners, and of averages (arithmetic or weighted) over edges or faces considered
- enough constraints to fix floating subdomains - $a(\cdot, \cdot)$ symmetric positive definite on \widetilde{W}

Variational form of $M_{B D D C}: r \longmapsto u$

$$
\begin{aligned}
w \in \widetilde{W}: \quad a(w, z) & =\langle r, E z\rangle \quad \forall z \in \widetilde{W} \\
u & =E w
\end{aligned}
$$

Local energy minimization problems

On each subdomain - coarse degrees of freedom - basis functions Ψ^{i} prescribed values of coarse degrees of freedom, minimal energy elsewhere,

$$
\left[\begin{array}{cc}
A^{i} & C^{i T} \\
C^{i} & 0
\end{array}\right]\left[\begin{array}{l}
\Psi^{i} \\
\Lambda^{i}
\end{array}\right]=\left[\begin{array}{l}
0 \\
I
\end{array}\right] .
$$

- A^{i}... local subdomain stiffness matrix
- $C^{i} \ldots$ matrix of constraints - selects unknowns into coarse degrees of freedom Matrix of coarse problem A_{C} assembled from local matrices $A_{C i}=\Psi^{i T} A^{i} \Psi^{i}=-\Lambda^{i}$.

coarse basis fun.

Assumption on solvability of local saddle-point systems

$$
\text { null } A^{i} \cap \operatorname{null} C^{i}=\{\mathbf{0}\}
$$

- invertibility of

$$
\left[\begin{array}{cc}
A^{i} & C^{i T} \\
C^{i} & 0
\end{array}\right]
$$

follows, see e.g. [Benzi, Golub, Liesen (2005)]

- satisfied if enough constraints on continuity in \widetilde{W} are selected

Disconnected and loosely coupled subdomains

- more constrains needed in C^{i}
- more coarse basis functions Ψ^{i}

- local nullspaces more complicated
- more constrains needed for each subdomain
- detect graph components of subdomain mesh
P. Kůs, J. Šístek. Coupling parallel adaptive mesh refinement with a nonoverlapping domain decomposition solver. Advances in Engineering Software, 110:34-54, 2017.

- local nullspaces more complicated
- more constrains needed for each subdomain
- detect graph components of subdomain mesh
P. Kůs, J. Šístek. Coupling parallel adaptive mesh refinement with a nonoverlapping domain decomposition solver. Advances in Engineering Software, 110:34-54, 2017.

- local nullspaces more complicated
- more constrains needed for each subdomain
- detect graph components of subdomain mesh
P. Kůs, J. Šístek. Coupling parallel adaptive mesh refinement with a nonoverlapping domain decomposition solver. Advances in Engineering Software, 110:34-54, 2017.

Get residual at interface nodes $r_{\Gamma}^{(k)}=g-S u_{\Gamma}^{(k)}$ and produce preconditioned residual $z_{\Gamma}^{(k)}=M_{B D D C} r_{\Gamma}^{(k)}$ by

1 1. Distribution of residual
subdomain problems (global) coarse problem

2 Correction of solution

3 Combination of subdomain and coarse corrections

One step of BDDC

Get residual at interface nodes $r_{\Gamma}^{(k)}=g-S u_{\Gamma}^{(k)}$ and produce preconditioned residual $z_{\Gamma}^{(k)}=M_{B D D C} r_{\Gamma}^{(k)}$ by
11 . Distribution of residual
subdomain problems (global) coarse problem

$$
\begin{gathered}
\text { for } i=1, \ldots, N \\
r^{i}=E^{i T} r_{\Gamma}^{(k)}
\end{gathered}
$$

$$
r_{C}=\sum_{i=1}^{N} R_{C}^{i T} \Psi^{i * T} E^{i T} r_{\Gamma}^{(k)}
$$

2 Correction of solution

[3 Combination of subdomain and coarse corrections

Get residual at interface nodes $r_{\Gamma}^{(k)}=g-S u_{\Gamma}^{(k)}$ and produce preconditioned residual $z_{\Gamma}^{(k)}=M_{B D D C} r_{\Gamma}^{(k)}$ by
11 . Distribution of residual
subdomain problems (global) coarse problem

$$
\begin{gathered}
\text { for } i=1, \ldots, N \\
r^{i}=E^{i T} r_{\Gamma}^{(k)}
\end{gathered}
$$

$$
r_{C}=\sum_{i=1}^{N} R_{C}^{i T} \Psi^{i * T} E^{i T} r_{\Gamma}^{(k)}
$$

2 Correction of solution

$$
\left[\begin{array}{cc}
A^{i} & C^{i T} \\
C^{i} & 0
\end{array}\right]\left[\begin{array}{c}
z^{i} \\
\mu^{i}
\end{array}\right]=\left[\begin{array}{c}
r^{i} \\
0
\end{array}\right] \quad A_{C} u_{C}=r_{C}
$$

3 Combination of subdomain and coarse corrections

Get residual at interface nodes $r_{\Gamma}^{(k)}=g-S u_{\Gamma}^{(k)}$ and produce preconditioned residual $z_{\Gamma}^{(k)}=M_{B D D C} r_{\Gamma}^{(k)}$ by
11 . Distribution of residual
subdomain problems (global) coarse problem

$$
\begin{gathered}
\text { for } i=1, \ldots, N \\
r^{i}=E^{i T} r_{\Gamma}^{(k)}
\end{gathered}
$$

$$
r_{C}=\sum_{i=1}^{N} R_{C}^{i T} \Psi^{i * T} E^{i T} r_{\Gamma}^{(k)}
$$

2 Correction of solution

$$
\left[\begin{array}{cc}
A^{i} & C^{i T} \\
C^{i} & 0
\end{array}\right]\left[\begin{array}{c}
z^{i} \\
\mu^{i}
\end{array}\right]=\left[\begin{array}{c}
r^{i} \\
0
\end{array}\right] \quad A_{C} u_{C}=r_{C}
$$

3 Combination of subdomain and coarse corrections

$$
z_{\Gamma}^{(k)}=\sum_{i=1}^{N} E^{i}\left(\Psi^{i} R_{C}^{i} u_{C}+z^{i}\right)
$$

Outline

Introduction

Parallel adaptive mesh refinement

Multilevel BDDC method

Immersed boundary FEM

Numerical results

Conclusion and outlooks

- an approach to avoiding mesh generation in FEM simulations
- robustness for geometric resolution through implicit description of the boundary

Nonstandard features compared to FEM

- weak enforcement of Dirichiet boundary conditions
- nonstandard quadrature rules
- ill-conditioning of stiffness matrices due to cut cells

T. Rüberg, F. Cirak, and J.M. Garcia-Aznar, An unstructured immersed finite element method for nonlinear solid mechanics, Advanced Modeling and Simulation in Engineering Sciences, 2016.
- an approach to avoiding mesh generation in FEM simulations
- robustness for geometric resolution through implicit description of the boundary

Nonstandard features compared to FEM

- weak enforcement of Dirichlet boundary conditions
- nonstandard quadrature rules
- ill-conditioning of stiffness matrices due to cut cells

T. Rüberg, F. Cirak, and J.M. Garcia-Aznar, An unstructured immersed finite element method for nonlinear solid mechanics, Advanced Modeling and Simulation in Engineering Sciences, 2016.

$$
u \in H^{1}(\Omega): \quad a(u, v)=l(v) \quad \forall v \in H^{1}(\Omega)
$$

Penalty method

$$
\begin{aligned}
a(u, v) & =\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} \Omega+\int_{\Gamma_{D}} \gamma u v \mathrm{~d} \Gamma \\
l(v) & =\int_{\Omega} f v \mathrm{~d} \Omega+\int_{\Gamma_{N}} \bar{t} v \mathrm{~d} \Gamma+\int_{\Gamma_{D}} \gamma \bar{u} v \mathrm{~d} \Gamma
\end{aligned}
$$

$$
u \in H^{1}(\Omega): \quad a(u, v)=l(v) \quad \forall v \in H^{1}(\Omega)
$$

Penalty method

$$
\begin{aligned}
a(u, v) & =\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} \Omega+\int_{\Gamma_{D}} \gamma u v \mathrm{~d} \Gamma \\
l(v) & =\int_{\Omega} f v \mathrm{~d} \Omega+\int_{\Gamma_{N}} \bar{t} v \mathrm{~d} \Gamma+\int_{\Gamma_{D}} \gamma \bar{u} v \mathrm{~d} \Gamma
\end{aligned}
$$

Nitsche method

$$
\begin{aligned}
a(u, v) & =\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} \Omega-\int_{\Gamma_{D}}(\mathbf{n} \cdot \nabla u) v \mathrm{~d} \Gamma \\
& -\int_{\Gamma_{D}}(\mathbf{n} \cdot \nabla v) u \mathrm{~d} \Gamma+\int_{\Gamma_{D}} \gamma u v \mathrm{~d} \Gamma \\
l(v) & =\int_{\Omega} f v \mathrm{~d} \Omega+\int_{\Gamma_{N}} \bar{t} v \mathrm{~d} \Gamma-\int_{\Gamma_{D}}(\mathbf{n} \cdot \nabla v) \bar{u} \mathrm{~d} \Gamma+\int_{\Gamma_{D}} \gamma \bar{u} v \mathrm{~d} \Gamma
\end{aligned}
$$

- $\gamma=\gamma_{0} \alpha / h$

Parallel FEM solver with AMR and embedded domains

- experimental in-house code
- implicit geometry description
- C++ with MPI

p4est mesh manager for AMR

- rebalancing based on Z-curves
- ANSI C + MPI
- open-source (GPL)
- scalability reported for $1 e 5-1$ e6 cores
http://www.p4est.org

BDDCML equation solver

- Adaptive-Multilevel BDDC
- Fortran 95 + MPI
- open-source (LGPL)
- current version 2.5 (8/6/'15)
- tested on up to 65 e 3 cores and 2 e 9 unknowns
http://www.math.cas.cz/~sistek/ software/bddcml.html

Outline

Introduction

Parallel adaptive mesh refinement

Multilevel BDDC method

Immersed boundary FEM

Numerical results

Conclusion and outlooks

Adaptive mesh refinement

Internal layer benchmark

$$
\begin{aligned}
-\Delta u & =f \quad \text { on } \quad(0,1)^{d} \\
u & =\arctan \left(s \cdot\left(r-\frac{\pi}{3}\right)\right)
\end{aligned}
$$

■ solution exhibits sharp internal layer

- r is a distance from a given point

■ s controls "steepness" of the layer

Adaptivity in 3D on 8 subdomains

- Adaptivity tested for element orders 1-4 (showed order 1)

■ Guided by exact solution, using H^{1} semi-norm for error calculation

Iteration 3, mesh and solution

Adaptivity in 3D on 8 subdomains

- Adaptivity tested for element orders 1-4 (showed order 1)

■ Guided by exact solution, using H^{1} semi-norm for error calculation

Iteration 5, mesh and solution

Adaptivity in 3D on 8 subdomains

- Adaptivity tested for element orders 1-4 (showed order 1)

■ Guided by exact solution, using H^{1} semi-norm for error calculation

Iteration 8, mesh and solution

Adaptivity in 3D, 3-level BDDC, linear elements

Adaptive mesh refinement

subs.	size	loc. size	PCG its.	time set-up [s]	time PCG [s]
$2048 / 46$	4913	2	$\mathbf{9}$	2.8	1.1
$2048 / 46$	8594	4	29	0.55	1.6
$2048 / 46$	$2.5 \cdot 10^{4}$	12	53	0.6	3
$2048 / 46$	$1.3 \cdot 10^{5}$	63	$\mathbf{6 0}$	0.67	3.5
$2048 / 46$	$7.0 \cdot 10^{5}$	342	54	0.89	3.5
$2048 / 46$	$3.0 \cdot 10^{6}$	1445	56	1.6	4.8
$2048 / 46$	$1.4 \cdot 10^{7}$	6623	55	2.9	10
$2048 / 46$	$6.4 \cdot 10^{7}$	$3.1 \cdot 10^{4}$	55	10	33
$2048 / 46$	$2.9 \cdot 10^{8}$	$1.4 \cdot 10^{5}$	56	61	130
$2048 / 46$	$1.3 \cdot 10^{9}$	$6.3 \cdot 10^{5}$	$\mathbf{5 1}$	565	521

■ run on Salomon@IT4I
P. Kůs, J. Šístek. Coupling parallel adaptive mesh refinement with a nonoverlapping domain decomposition solver. Advances in Engineering Software, 110:34-54, 2017.

Illustrative mesh, 100K DOFs, 20 subdomains, shown 1 - 20

Illustrative mesh, 100K DOFs, 20 subdomains, shown 1-18

Illustrative mesh, 100K DOFs, 20 subdomains, shown 1-16

Illustrative mesh, 100K DOFs, 20 subdomains, shown 1-14

Illustrative mesh, 100K DOFs, 20 subdomains, shown 1 - 12

Illustrative mesh, 100K DOFs, 20 subdomains, shown 1 - 10

Illustrative mesh, 100K DOFs, 20 subdomains, shown 1-8.

Outline

Introduction

Parallel adaptive mesh refinement

Multilevel BDDC method

Immersed boundary FEM

Numerical results

Conclusion and outlooks

Our use of direct solver

Two matrix factorizations

- 50% runtime (of the solver itself) spent in matrix factorizations, another 30% in back substitions (in iterations).
- We factorize two matrices on each subdomain. First $A_{o o}$ with inner DOFs, the other with approx. 20\% extra rows and columns, a saddle point problem. The first matrix is a submatrix of the second one.
- For Poisson problem and linear elasticity we use Cholesky and $L D L^{T}$ decompositions, respectively. LU with pivoting used for non-symmetric problems.

$$
\left[\begin{array}{ccc}
A_{o o} & A_{o \Gamma} & 0 \\
A_{\Gamma o} & A_{\Gamma \Gamma} & C_{\Gamma}^{T} \\
0 & C_{\Gamma} & 0
\end{array}\right]
$$

- We need to invert $A_{o o}$ and the 3 by 3 block matrix on each subdom.
- For eliptic problems, $A_{o o}$ is positive definite, the first 2 by 2 block matrix is positive semidefinite and the whole 3 by 3 block matrix is a saddle point problem.
- Only the part of C_{i} corresponding to the interface Γ is nonzero $\left(C_{\Gamma}\right)$.

Our use of direct solver

Distibution of subdomains

- Currently we run pure MPI with one subdomain per MPI rank, trying to balance the subdomain sizes.
- This is sometimes difficult to achieve when using the parallel adaptivity of the mesh and many subdomain components.
- Having variable number of subdomains per node is appealing from various reasons, but would require a major code refactoring.

Thank you for your attention!

Pavel Kůs
kus@math.cas.cz

Institute of Mathematics, Czech Academy of Sciences, Prague

BDDCML library

http://users.math.cas.cz/~sistek/software/bddcml.html

