Neural Networks Speed-Up and Compression

Julia Gusak y.gusak@skoltech.ru

Skolkovo Institute of Science and Technology, Moscow

February, 2022

Neural Network Compression & Inference Speed-up: Motivation

- Most state of the art deep neural networks are overparameterized and exhibit a high computational cost.
- Often they cannot be efficiently deployed on embedded systems and mobile devices.
- Acceleration of pre-trained networks are usually achieved through structural pruning/sparcification, low-rank approximation and quantization.

Recent Research

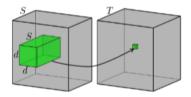
- Low-rank tensor approximation of weight tensors to speed up and compress pre-trained NNs:
 - multi-stage compression (ICCVW, 2019, link),
 - stable low-rank approximation(ECCV, 2020, link).
- Dimensionality reduction of activations (layers' outputs) to speed up and compress pre-trained NNs:
 - faster NNs using maximum volume algorithm (Computational Mathematics and Mathematical Physics Journal, 2021, link),
 - smaller NNs using active subspaces (SIAM Journal on Mathematics of Data Science, 2020, link).

NNs Compression via Weight Approximation: Motivation

For a convolutional layer with input of size $H \times W \times S$ and kernel (weight tensor) of size $d \times d \times T \times S$ number of

• parameters: $O(d^2ST)$

• operations: $O(HWd^2ST)$



Source: https://arxiv.org/pdf/1412.6553.pdf Figure: Convolutional layer.

Reducing the number of parameters in NNs is a common trick to accelerate inference time and at the same time reduce power usage and network memory.

Tensor Decompositions for Weight Approximation

•
$$\underline{X}_{ijk} \cong \sum_{r=1}^{R} \lambda_r a_{ir} b_{jr} c_{kr}$$

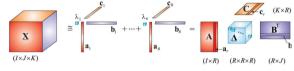


Figure: rank-R CP decomposition of 3D tensor (source: http://arxiv.org/abs/1609.00893)

Tensor Decompositions for Weight Approximation

• $\underline{X}_{ijk} \cong \sum_{r=1}^{R} \lambda_r a_{ir} b_{jr} c_{kr}$

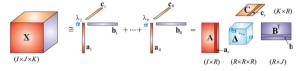


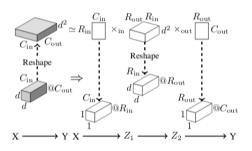
Figure: rank-R CP decomposition of 3D tensor (source: http://arxiv.org/abs/1609.00893)

$$\bullet \ \underline{X}_{ijk} \cong \sum_{r_1}^{R_1} \sum_{r_2}^{R_2} \sum_{r_3}^{R_3} g_{r_1 r_2 r_3} b_{ir_1}^{(1)} b_{jr_2}^{(2)} b_{kr_3}^{(3)}$$

$$I = \underbrace{\begin{bmatrix} \mathbf{B}^{(3)} & (K \times R_3) \\ R_3 & \mathbf{B}^{(2)} \end{bmatrix}}_{I \times R_1} = \underbrace{\sum_{r_1, r_2, r_3}}_{r_1, r_2, r_3} \underbrace{\mathbf{b}^{(3)}_{r_1} \\ \mathbf{b}^{(1)}_{r_2} \end{bmatrix}}_{I \times R_1} \underbrace{\mathbf{b}^{(2)}_{r_1} \\ \mathbf{b}^{(1)}_{r_2} \underbrace{\mathbf{b}^{(2)}_{r_2} \\ \mathbf{b}^{(2)}_{r_2} \end{bmatrix}}_{I \times R_1}$$

Figure: rank- (R_1, R_2, R_3) Tucker decomposition of 3D tensor

Layer Compression via Weight Approximation



- **Top row**: low-rank approximation of 3D weight tensor.
 - Tucker: $O(d^2C_{\rm in}C_{\rm out}) \rightarrow O(C_{\rm in}R_{\rm in} + d^2R_{\rm out}R_{\rm in} + C_{\rm out}R_{\rm out})$ parameters,
 - CP: $O(d^2C_{\rm in}C_{\rm out}) \rightarrow O\left(R(C_{\rm in}+d^2+C_{\rm out})\right)$ parameters, $R=R_{out}=R_{\rm in}$.
- Bottom row: initial layer is replaced with a sequence of layers.
 - Tucker: middle convolution is standard.
 - CP: middle convolution is depth-wise.

NN Compression via Weight Approximation: One-Stage

NN compression via low-rank tensor/matrix approximations of weight tensors is usually built on the following one-stage scheme:

- Compress a pre-trained neural network. For each layer do
 - Extract a convolutional kernel.
 - Decompose it into factors.
 - Replace initial layer by a sequence of layers with factors as kernels.
 - Calibrate NN statistics.
- Fine-tune NN.

Drawbacks:

- significant loss of accuracy for high compression rates,
- this yields a bad initialization for further fine-tuning.

Recent Research

- Low-rank tensor approximation of weight tensors to speed up and compress pre-trained NNs:
 - multi-stage compression (ICCVW, 2019, link),
 - stable low-rank approximation(ECCV, 2020, link).
- ② Dimensionality reduction of activations (layers' outputs) to speed up and compress pre-trained NNs:
 - faster NNs using maximum volume algorithm (Computational Mathematics and Mathematical Physics Journal, 2021, link),
 - smaller NNs using active subspaces (SIAM Journal on Mathematics of Data Science, 2020, link).

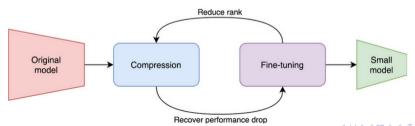
NN Compression: Multi-Stage

Multi-stage approach with gradual rank reduction addresses the problem arised in one-stage approach.

While a desired compression rate is not reached or automatically selected ranks are not stabilized, repeat:

- Compress the neural network.
- Fine-tune the neural network.

Benefits: compressed representation allows to find a good initial approximation.



NN Compression: Automated Rank Selection

Constant compression rate.

$$\#params(R_{new}) = \frac{\#params(R)}{rate}.$$

Constant layer acccuracy drop.

$$accuracy(R) - accuracy(R_{new}) < drop,$$

accuracy is computed before fine-tuning, *drop* is a maximum allowed accuracy decrease caused by one layer compression.

• Bayesian approach. For each channel dimension

$$R_{new} = R - factor \cdot (R - R_{EVBMF}),$$

 R_{EVBMF} is found via global analytic solution of Empirical Variational Bayesian Matrix Factorization, $0 \le factor \le 1$, $R_{EVBMF} \le R_{new} \le R$.

NN Compression: Further Compression Step

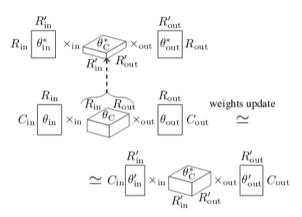


Figure: Compression of the factorized weight. Rank of the approximation is reduced from R to R'.

Results: MUlti-Stage COmpression

- MUlti-Stage COmpression outperforms one-stage compression on all tested
 - classification (AlexNet, VGG-16, ResNet-18, ResNet-50) and
 - object detection tasks (YOLOv2, TinyYOLO, FasterRCNN).
- Comparison with pruning approaches

Method	FLOPs	∆ top-1	△ top-5		
RESNET-18 @ ILSVRC12 dataset					
Network Slimming(Liu &al.,'17)	1.39	-1.77	-1.29		
Low-cost Col. Layers(Dong &al.,'17)	1.53	-3.65	-2.3		
Channel Gating NN(Hua &al., '18)	1.61	-1.62	-1.03		
Filter Pruning(Li &al.,'17)	1.72	-3.18	-1.85		
Discraware Ch.Pr.(Zhuang &al.,'18)	1.89	-2.29	-1.38		
FBS(Gao &al.,'18)	1.98	-2.54	-1.46		
MUSCO (Our)	2.42	-0.47	-0.30		

Next: How to stabilize fine-tuning with CP decomposed layers.

Recent Research

- Low-rank tensor approximation of weight tensors to speed up and compress pre-trained NNs:
 - multi-stage compression (ICCVW, 2019, link),
 - stable low-rank approximation(ECCV, 2020, link).
- ② Dimensionality reduction of activations (layers' outputs) to speed up and compress pre-trained NNs:
 - faster NNs using maximum volume algorithm (Computational Mathematics and Mathematical Physics Journal, 2021, link),
 - smaller NNs using active subspaces (SIAM Journal on Mathematics of Data Science, 2020, link).

CPD: Degeneracy

Standard CPD suffers from the presence of rank-one components that have relatively high Frobenius norms, but cancel each other.

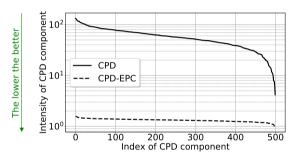


Figure: Intensity (Frobenius norm) for each rank-1 component from rank-500 CPD of a ResNet-18 weight. CPD-EPC states for the proposed decomposition.

CPD: Sensitivity

Sensitivity of the tensor $\mathfrak{T} = [\![\mathbf{A}, \mathbf{B}, \mathbf{C}]\!]$ is a measure of factorized tensor norm change with respect to perturbations in individual factor matrices.

$$\mathrm{ss}\big([\![\mathbf{A}, \mathbf{B}, \mathbf{C}]\!] \big) = \lim_{\sigma^2 \to 0} \frac{1}{R\sigma^2} \mathbb{E} \{ \| \mathbf{\mathcal{T}} - [\![\mathbf{A} + \delta \mathbf{A}, \mathbf{B} + \delta \mathbf{B}, \mathbf{C} + \delta \mathbf{C}]\!] \|_F^2,$$

where $\delta \mathbf{A}, \delta \mathbf{B}, \delta \mathbf{C} \sim \mathcal{N}(0, \sigma^2)$.

Sensitivity can be computed as

$$\mathsf{ss}([\![\mathbf{A},\mathbf{B},\mathbf{C}]\!]) = \mathsf{tr}\{(\mathbf{A}^T\mathbf{A}) \circledast (\mathbf{B}^T\mathbf{B}) + (\mathbf{B}^T\mathbf{B}) \circledast (\mathbf{C}^T\mathbf{C}) + (\mathbf{A}^T\mathbf{A}) \circledast (\mathbf{C}^T\mathbf{C})\}$$

CPD-EPC

Proposed CPD-EPC is a CPD with minimal sensitivity

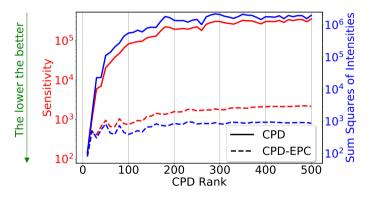
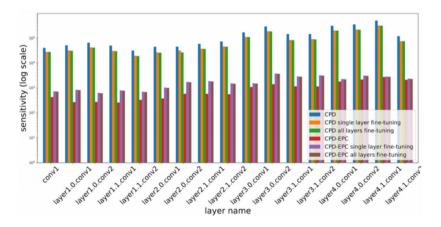


Figure: Sum of squares of the intensity and Sensitivity vs Rank of CPD.

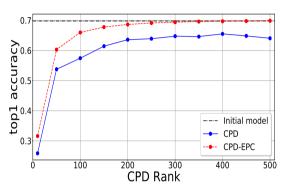
NN Compression via CPD: Sensitivity

Our method minimizes sensitivity of CPD making factorized layer stable during fine-tuning.



Results: NN Compression via CPD-EPC

CPD-EPC results in a significantly higher accuracy than the standard CPD.



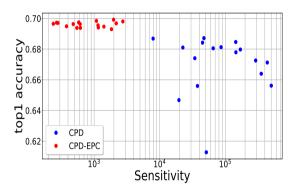


Figure: Evaluation of ResNet-18 with decomposed layer4.1.conv1 by CPD-EPC and original CPD after single layer fine-tuning, ILSVRC-12 dataset.

Results: NN Compression via CPD-EPC

Our method achieves the best performance in terms of compression-accuracy drop trade-off among all the considered results.

Table: Comparison of different model compression methods on ILSVRC-12 validation dataset. The baseline models are taken from Torchvision.

Model	Method	\downarrow FLOPs	△ top-1	△ top-5
VGG-16	Asym. (Zhang&al., '16)	≈ 5.00	-	-1.00
	TKD+VBMF(Kim&al.,'16)	4.93	-	-0.50
	Our (EPS ¹ =0.005)	5.26	-0.92	-0.34
ResNet-18	Channel Gating NN(Hua &al., '18)	1.61	-1.62	-1.03
	Discraware Ch.Pr.(Zhuang &al.,'18)	1.89	-2.29	-1.38
	FBS(Gao &al.,'18)	1.98	-2.54	-1.46
	MUSCO (Our'19)	2.42	-0.47	-0.30
	Our (EPS 1 =0.00325)	3.09	-0.69	-0.15
ResNet-50	Our (EPS ¹ =0.0028)	2.64	-1.47	-0.71

Results: NN Compression via CPD-EPC

Table: Inference time and acceleration for ResNet-50 on different platforms.

Platform	Model inference time		
Flationii	Original	Compressed	
Intel® Xeon®Silver 4114 CPU 2.20 GHz	$3.92 \pm 0.02 s$	$2.84 \pm 0.02 s$	
NVIDIA®Tesla®V100	$102.3\pm0.5~\text{ms}$	$89.5\pm0.2~\text{ms}$	
Qualcomm®Snapdragon™845	221 \pm 4 ms	$171 \pm 4 \text{ ms}$	

Python package: musco-pytorch

MUSCO is a Python library for NNs compression via tensor/matrix approximation of weight tensors.

- Supported layers: convolutional (1D, 2D), fully-connected.
- Supported decompositions: SVD, different types of CPD, Tucker decomposition.
- Supported rank selection: manual, constant compression rate, Bayesian (VBMF).
- Supports multi-stage compression.
- **Source code**: https://github.com/musco-ai/musco-pytorch/tree/develop

Python package: musco-pytorch

Steps to perform model compression using MUSCO package.

- Load a pre-trained model.
- Compute model statistics.
- Define a model compression schedule.
- Create a Compressor.
- Compress.

Python package: musco-pytorch

```
from flopco import FlopCo
from musco.pytorch import Compressor
model = resnet50(pretrained = True)
model stats = FlopCo(model, device = device)
compressor = Compressor(model,
                        model_stats,
                        ft everv=5.
                        nglobal_compress_iters=2,
                        config type = 'vbmf')
while not compressor.done:
    # Compress layers
    compressor.compression step()
    # Fine-tune compressor.compressed model
```

For detailed instructions check *README.md* and *docs* at https://github.com/musco-ai/musco-pytorch/tree/develop

NNs Compression via Weight Approximation: Conclusion

- Tensor based NN speedup can be improved by using
 - Multi-stage instead of one-stage compression,
 - CPD-EPC instead of standard CPD.

Further research:

- Joint low-rank tensor approximation and quantization for model compression.
- Architectures that have both inputs and weights represented in a factorized format (potentially useful for efficient processing of very large models).
- Robust tensorized architectures.

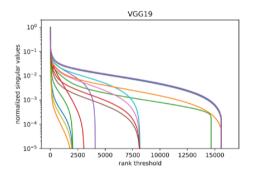
NNs Compression via Weight Approximation: Links with Efficient NNs

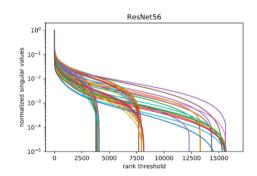
- There is a tight link between efficient DL blocks and layers that arise after applying different tensor decompositions to the standard convolutional kernels.
 - CP decomposition → MobileNet block,
 - Tucker decomposition → ResNet Bottleneck block,
 - Block Term decomposition → ResNext block.
- Hence, neural architecture search might be considered as a search for optimal decomposition.

Recent Research

- Low-rank tensor approximation of weight tensors to speed up and compress pre-trained NNs:
 - multi-stage compression (ICCVW, 2019, link),
 - stable low-rank approximation(ECCV, 2020, link).
- Dimensionality reduction of activations (layers' outputs) to speed up and compress pre-trained NNs:
 - faster NNs using maximum volume algorithm(Computational Mathematics and Mathematical Physics Journal, 2021, link),
 - smaller NNs using active subspaces (SIAM Journal on Mathematics of Data Science, 2020, link).

Our method relies on the assumption that the **outputs** of some layers can be mapped to a low-dimensional space





Reduced-Order Modelling of Network (RON): Multi-Layer Perceptron

- ψ_k (k = 1, ..., K) are non-decreasing element-wise activation functions (e.g., ReLU, ELU or Leaky ReLU)
- z_0 is an input sample, which undergoes the following transformations

$$z_1 = \psi_1(W_1 z_0), \ z_2 = \psi_2(W_2 z_1), \dots, \ z_K = W_K z_{K-1},$$

where $\mathbf{W}_k \in \mathbb{R}^{D_k \times D_{k-1}}$ is a weight matrix of the k-th layer

• The low-rank assumption for the first layer:

$$z_1 \cong \boxed{V_1 c_1 \cong \psi_1(W_1 z_0)}$$

where c_1 is the embedding of z_1

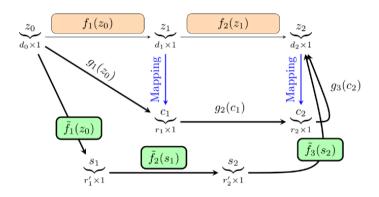
• We compute this embedding using the maximum volume algorithm:

$$\boldsymbol{c}_1 \cong (\boldsymbol{S}_1 \, \boldsymbol{V}_1)^{\dagger} \, \boldsymbol{S}_1 \psi_1 \, (\boldsymbol{W}_1 \, \boldsymbol{z}_0) = \underbrace{(\boldsymbol{S}_1 \, \boldsymbol{V}_1)^{\dagger}}_{R_1 \times P_1} \psi_1 (\underbrace{\boldsymbol{S}_1 \, \boldsymbol{W}_1}_{P_1 \times D_1} \, \boldsymbol{z}_0),$$

where S_1 is a matrix which selects the relevant rows.

28/39

RON: Illustration



RON: From K-layer Network to a Faster (K + 1)-layer Network

• We can compute c_2, \ldots, c_K using the same technique

$$\begin{aligned} & \boldsymbol{c}_{1} \cong \underbrace{(\boldsymbol{S}_{1} \boldsymbol{V}_{1})^{\dagger}}_{R_{1} \times P_{1}} \psi_{1}(\underbrace{\boldsymbol{S}_{1} \boldsymbol{W}_{1}}_{P_{1} \times D_{1}} \boldsymbol{z}_{0}), \\ & \boldsymbol{c}_{k} \cong \underbrace{(\boldsymbol{S}_{k} \boldsymbol{V}_{k})^{\dagger}}_{R_{K} \times P_{k}} \psi_{2}(\underbrace{\boldsymbol{S}_{k} \boldsymbol{W}_{k} \boldsymbol{V}_{k-1}}_{P_{k} \times R_{k-1}} \boldsymbol{c}_{k-1}), \quad k = 2, \dots, K \end{aligned}$$

• We get a (K+1)-layer neural network:

$$egin{aligned} s_1 &\cong \psi_1(\underbrace{S_1 \, W_1}_{P_1 imes D_1} \, z_0), \ s_k &\cong \psi_k(\underbrace{S_k \, W_k \, V_{k-1} \, (S_{k-1} \, V_{k-1})^\dagger}_{P_k imes P_{k-1}} \, s_{k-1}), \quad k = 2, \ldots, K \ &z_K &\cong \underbrace{V_K \, (S_K \, V_K)^\dagger}_{D_k imes R_K} \, s_K. \end{aligned}$$

RON: Convolutional Networks

- Convolution is a linear transformation, and we treat it as a matrix-by-vector product, and we convert convolutions to fully-connected layers.
- Batch normalization can be merged with the dense layer for inference.
- Maximum pooling is a local operation, which typically maps 2 × 2 region into a single value the maximum value in the given region. We manage this layer by taking 4 times more indices and by applying maximum pooling after sampling

RON: Residual Networks

We approximate the output of each branch and the result as follows

$$\boldsymbol{V}\boldsymbol{c} \cong \psi \left(\boldsymbol{V}_1 \boldsymbol{c}_1 + \ldots + \boldsymbol{V}_k \boldsymbol{c}_k \right).$$

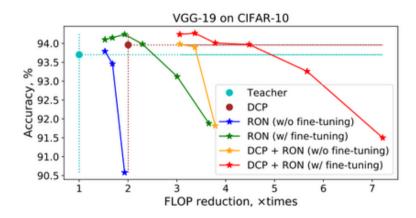
If S is a sampling matrix for matrix V, the embedding c is computed as

$$oldsymbol{c} \cong (oldsymbol{S}oldsymbol{V})^\dagger \, \psi \, (oldsymbol{S}oldsymbol{V}_1 \, oldsymbol{c}_1 + \ldots + oldsymbol{S}oldsymbol{V}_k \, oldsymbol{c}_k) \, .$$

The rest steps of residual networks acceleration are the same as for the standard multilayer perceptron.

RON: Results

Accuracy depending on FLOP reduction for models accelerated using Reduced-Order modelling of Neural Networks (RON).



RON: Remarks

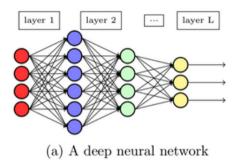
- The method can be applied on top of other acceleration methods and process the majority of popular network architectures.
- The resulting network is a simple multi-layer perceptron.
- In general, this method is for acceleration, not for compression.

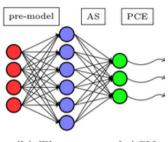
Further research: build a faster network as a convolutional one, that will require keeping high-order structure of layers' outputs when performing dimesionality reduction.

Recent Research

- Low-rank tensor approximation of weight tensors to speed up and compress pre-trained NNs:
 - multi-stage compression (ICCVW, 2019, link),
 - stable low-rank approximation(ECCV, 2020, link).
- Dimensionality reduction of activations (layers' outputs) to speed up and compress pre-trained NNs:
 - faster NNs using maximum volume algorithm (Computational Mathematics and Mathematical Physics Journal, 2021, link),
 - smaller NNs using active subspaces (SIAM Journal on Mathematics of Data Science, 2020, link).

NNs Compression using Active Subspaces





(b) The proposed ASNet

Active Subspace method uses the covariance matrix of gradient to find a projection matrix. PCE states for polynomial chaos expansion.

Resume

- Tensors have a great potential to improve DL pipelines. Tensors
 - Incorporate higher-order correlations and multi-model data effectively.
 - Provide structural priors in DL.
 - Have been shown to impove DL applications (NNs speed-up/compression, one-shot learning, domain adaptation, incremental learning, fusion of features, etc.)
- Further research:
 - Joint low-rank approximation and quantization for model compression.
 - Architectures that have both inputs and weights represented in a factorized format.
 - Robust tensorized architectures.
 - Multi-modal feature fusion (e.g., images/video-point clouds, images-speech).
 - Combine reduced-order modeling technique (RON) and tensor methods to build a faster convolutional network.

References

- Automated Multi-Stage Compression of neural networks. Gusak J., Kholiavchenko M., Ponomarev E., Markeeva L., Cichocki A., Oseledets I. // ICCV Low-Power Computer Vision Workshop (2019). link
- Stable Low-rank Tensor Decomposition for Compression of Convolutional Neural Network. Phan A., Sobolev K., Sozykin K., Ermilov D., Gusak J., Tichavsky P., Glukhov V., Oseledets I., Cichocki A. // ECCV (2020). link
- Reduced-Order Modeling of Deep Neural Networks. Gusak J., Daulbaev T.,
 Ponomarev E., Cichocki A., Oseledets I. // Computational Mathematics and Mathematical Physics Journal (2021). link
- Active Subspace of Neural Networks: Structural Analysis and Universal Attacks.
 Cui C., Zhang K., Daulbaev T., Gusak J., Oseledets I., Zhang Z. // SIAM Journal on Mathematics of Data Science, SIMODS (2020). link

Thank you!