
Neural Networks
Memory Footprint Reduction

during Training

Julia Gusak, Skoltech

March 2022, INRIA Bordeaux

Large scale deep learning models

2

● Standard way to train: stochastic gradient descent
● For many domains, it has been found that larger models and larger datasets give better

performance
● It includes: natural language processing (NLP), self-supervised learning, vision

transformers, contrastive language image pretraining, etc.

The time when you can train a large model on 1 GPU or on several GPUs is
quickly going away!

Challenges in training

3

Two challenges:

● Computational time

● Memory for the model and batch

Some computational costs

4

● CLIP model:
○ 18 days on 592 V100 GPUs (ResNet backbone)
○ 12 days on 256 V100 GPUs

● DALLE-E model: 1024 V100 GPU

● VIT model: 2500 TPU v3 core-days

Recent «world record»: Megatron-LM

5

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-me
gatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-langu
age-model/

How to train a big model?

6

● We have: the model and the data.
● We train using stochastic gradient descent (SGD)
● Given a batch of size
● We compute: forward , backward

What is computed

7

For a backward pass, we need to store activations!
They consume 0.1 - 10x of the memory of the model (depending on the batch
size)

Methods to Train Large Neural Networks

https://arxiv.org/abs/2202.10435

Types of Parallelism

Data Parallelism

 Data parallelism:
+ speeds up training
- weights and

gradients must fit
on the same device

Data Parallelism using ZeRO

 Data parallelism using ZeRO:
+ you can train models that

do not fit
on one device

- increases the number of
transfers between devices

Model Parallelism On tensor level
(“MP”, “Horizontal MP”)

On layers’ level
(“Naive MP”, “Vertical MP”)

To reduce GPU idle time, several
approaches have been
developed to organize a data
pipeline between devices:
GPipe, Megatron-LM, Varuna.

+ you can train models that
do not fit on one device

- bad GPU utilization: the
device waits for the output
of the previous layer of the
model

Model Parallelism: on Tensor Level
Tensor parallelism for Transformer

Pipeline Parallelism

GPipe
batches are divided into
micro-batches to reduce

downtime

Interleaved Pipeline: Varuna, SageMaker, DeepSpeed

Backward for the first micro-batch is computed
earlier than forward for the second micro-batch

3D Parallelism: PP+TP+DP(ZeRO)

32 GPUs are used: 4 groups tesor-parallelism * 4 groups pipeline-parallelism * 2 groups data-parallelism

MP-𝑛 denotes tensor-parallelism

Optimal Strategies for Pipeline Parallelism

None of the known approaches use:
● activation offloading to the CPU, or
● a combination of two methods, recomputation of activations when computing gradients and

offloading activations to CPU.

Activation Checkpointing &
Offloading to CPU

Computational Graph for GPT-2

Example: transformer block
from GPT-2 model contains:

1. Layer normalizations
2. Linear layers
3. Attention layer
4. GELU activation

GPT-2 Profiling: Memory

Memory in GB required to store all
activations, depending on the batch
size and the length of the token
sequence.

The memory limit of one GPU
V100-16GB is highlighted in red.

Methods to Reduce Activations Memory: Rotor
❏ Saving only part of activations in the forward pass and recomputing the

rest during gradients computation;

❏ Sending activations to CPU and loading from CPU as needed to calculate
gradients;

+ saves memory
- slows down training:

when computing
gradients, you have to
recompute activations

+ saves memory
- slows down training at

low bandwidth β

Optimization Methods

Optimization of Large Scale Models

loss function model weightsbatch size training data

Problem:

Algorithm:

batch size batchstep size

(SGD)

Questions: How to choose
step size?

How to choose
batch size?

How to store vectors so
they occupy less space?

How to use many devices to
speed up optimization? How to initialize weights?

Using batches of bigger sizes

● Training a model with a large
batch takes less time due to
parallelism.

● However, with a simple increase
in the batch, the generalizing
ability of the model is worse.

● When the batch size increases by
k times, the step size must be
increased by k times.

● Increasing the step should be
carried out gradually (warmup -
phase of the first few epochs).

● Layer-by-layer step size change
allows you to increase the batch
even more.

Optimization Methods

Using low-bit formats for
data storage

● The use of floating point
numbers and block
quantization are essential.

● The bitsandbytes library
from Facebook contains
8-bit optimizers

Optimization Methods

Distributed training and
federated learning

● By using a large number of
parallel computers, you can
increase the batch and speed up
training.

● Communications can be optimized
by transmitting low-rank
representations of gradients
(PowerSGD and GradZIP methods);
sparsification of gradients
(Sketched SGD) or quantization of
gradients.

● It is possible to do multiple
local gradient descent steps on
the GPU before forwarding to
avoid local minima (post-local
SGD).

Optimization Methods

Approximate Activation Gradients: Few-bit Backward

Approximate Activation Gradients: Few-bit Backward

Approximate Activation Gradients: Few-bit Backward

Approximate matrix multiplication: Randomized Backward

Approximate matrix multiplication: Randomized Backward

Approximate gradients

