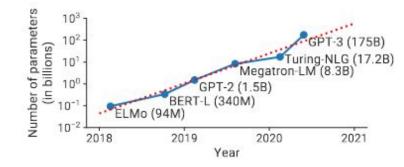
Neural Networks Memory Footprint Reduction during Training

Julia Gusak, Skoltech

March 2022, INRIA Bordeaux

Large scale deep learning models

- Standard way to train: stochastic gradient descent
- For many domains, it has been found that larger models and larger datasets give better performance
- It includes: natural language processing (NLP), self-supervised learning, vision transformers, contrastive language image pretraining, etc.



The time when you can train a large model on 1 GPU or on several GPUs is quickly going away!

Challenges in training

Two challenges:

- Computational time
- Memory for the model and batch

Some computational costs

- CLIP model:
 - 18 days on 592 V100 GPUs (ResNet backbone)
 - 12 days on 256 V100 GPUs
- DALLE-E model: 1024 V100 GPU
- VIT model: 2500 TPU v3 core-days

Recent «world record»: Megatron-LM

Model size	Hidden size	Number of layers	Number of parameters (billion)	Model-parallel size	Number of GPUs	Batch size	Achieved teraFIOPs per GPU	Percentage of theoretical peak FLOPs	Achieved aggregate petaFLOPs
1.7B	2304	24	1.7	1	32	512	137	44%	4.4
3.6B	3072	30	3.6	2	64	512	138	44%	8.8
7.5B	4096	36	7.5	4	128	512	142	46%	18.2
18B	6144	40	18.4	8	256	1024	135	43%	34.6
39B	8192	48	39.1	16	512	1536	138	44%	70.8
76B	10240	60	76.1	32	1024	1792	140	45%	143.8
145B	12288	80	145.6	64	1536	2304	148	47%	227.1
310B	16384	96	310.1	128	1920	2160	155	50%	297.4
530B	20480	105	529.6	280	2520	2520	163	52%	410.2
1T	25600	128	1008.0	512	3072	3072	163	52%	502.0

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-me gatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-langu age-model/

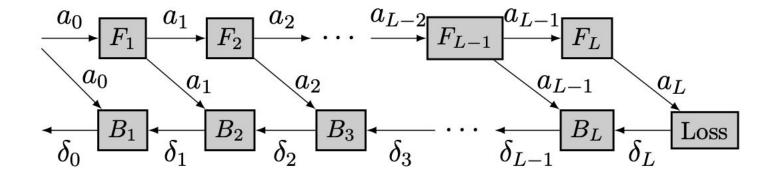
How to train a big model?

- We have: the model and the data.
- We train using stochastic gradient descent (SGD)
- Given a batch of size
- We compute: forward , backward

```
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
```

What is computed

For a backward pass, we need to store activations! They consume 0.1 - 10x of the memory of the model (depending on the batch size)

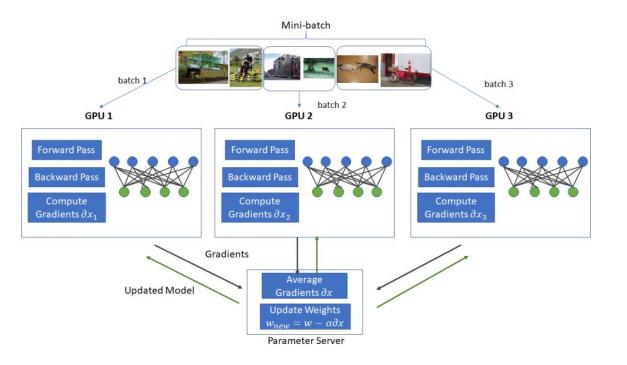


Methods to Train Large Neural Networks

Method	# of GPUs	Approx. computations	Communication costs per iteration activation values / weight values / activation grads / weight grads	Batch size per GPU increase?	# of FLOP per iteration
No data parallelism	1	baseline	baseline	baseline	baseline
Rematerialization	≥ 1	×	=/= =/=	1	1
Offloading:					
activations	≥ 1	×	$\uparrow / = = / =$	1	=
weights	≥ 1	×	$= / \uparrow = / \uparrow \text{ or } =$	1	=
tensors in GPU cache	≥ 1	×	\uparrow or = / \uparrow or = = / \uparrow or =	1	=
Approx. gradients:					
lower-bit activation grad.**	≥ 1	1	$\downarrow / = = / =$	1	\downarrow or =
approx. matmul ^{**}	≥ 1	1	$\downarrow / = = / =$	1	\$
lower-bit weight grad**	≥ 1	1	=/= =/↓	1	\downarrow or =
Data parallelism [*]	>1	×	baseline	×	=
Partitioning:					
optim. state	> 1	×	=/↑ =/=	1	=
+ gradients	> 1	×	=/ ↑ =/=	1	=
+ parameters	> 1	×	=/ ↑ =/=	1	=
Model parallelism [*]	> 1	×	$\uparrow /= \uparrow /\downarrow$	1	=
Pipeline parallelism	> 1	VIX	$\uparrow / = \uparrow / \downarrow$	1	=

Types of Parallelism

Data Parallelism



Data parallelism:

- + speeds up training
- weights and gradients must fit on the same device

Backward

Data Parallelism using ZeRO

Data parallelism using ZeRO:

- you can train models that do not fit on one device
- increases the number of transfers between devices

Gradients

Optimizer

state

Model

Parameters

GP1

OP1

P₁

(OP1)new

(P1)new

Optimizer

step

GP2

OP2

P₂

(OP₂)new

(P2)new

GP3

OP₃

P₃

(OP₃)new

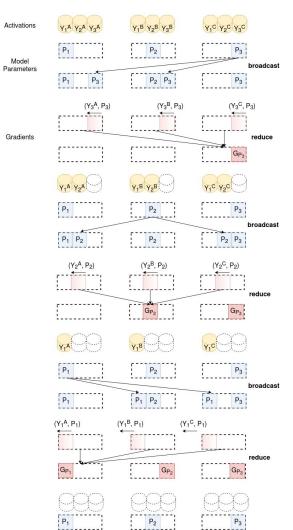
(P3)new

update

..........

.....

		Forward	
	GPU	GPU	GPU
Data Model	XA	XB	XC
Parameters P = [P ₁ , P ₂ , P ₃]	P ₁	P ₂	P ₃
	P ₁	P ₁ P ₂	P ₁ P ₃
Activations	YIA	Y ₁ B	Y1C
	P ₁	P ₂	P ₃ broadcast
	P ₁ P ₂	P ₂	P ₂ P ₃
	Y1A Y2A	Y1 ^B Y2 ^B	Y1C Y2C
	P ₁	P ₂	P ₃ broadcast
	P ₁ P ₃	P ₂ P ₃	P ₃
	Y ₁ A Y ₂ A Y ₃ A P1	Y ₁ ^B Y ₂ ^B Y ₃ ^B P ₂	Y ₁ C Y ₂ C Y ₃ C



Model Parallelism

On tensor level On layers' level ("MP", "Horizontal MP") ("Naive MP", "Vertical MP") GPU 1 Layer = Y Х A Layer 1 Layer 2 Layer 5 Layer 6 is equivalent to Y1 ayer Y2

GPU 0

GPU 2

GPU 3

 you can train models that do not fit on one device

 bad GPU utilization: the device waits for the output of the previous layer of the model

To reduce GPU idle time, several approaches have been developed to organize a data pipeline between devices: GPipe, Megatron-LM, Varuna.

S4				F1	В	1	F2	В	2	F3	В	3				F4	В	4	F5	В	5						
S3			F1	F2	F3	R1	В	1	R2	В	2	R3	В	3	F4	F5	R4	В	4	R5	В	5					
S2		F1	F2	F3	F4	F5		R1	В	1	R2	B	2	R3	В	3				R4	В	4	R5	В	5		
S1	F1	F2	F3	F4	F5					R1	В	1	R2	В	2	R3	В	3				R4	В	4	R5	B	5

Х

A1 A2 A3

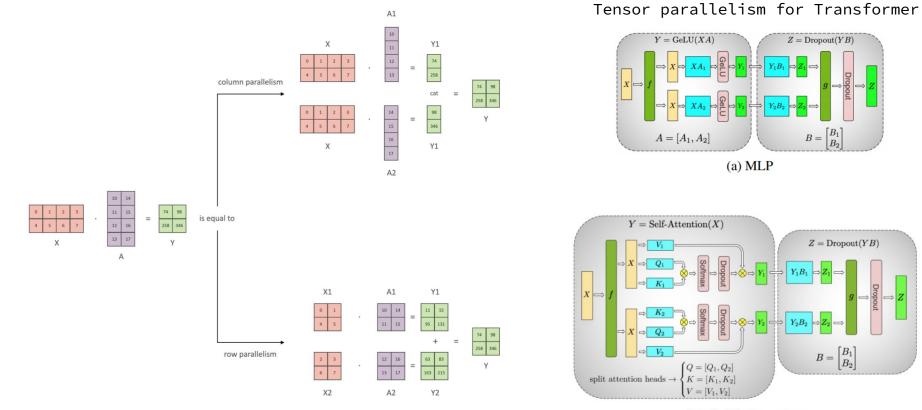
(a) Varuna Schedule

Y3

S 4				F1	F2	F3	F4	F5	В	5	R4	В	4	R3	В	3	R2	В	2	R1	В	1						
S3			F1	F2	F3	F4	F5				В	5	R4	В	4	R3	B	3	R2	В	2	R1	В	1				
S2		F1	F2	F3	F4	F5							B	5	R4	В	4	R3	В	3	R2	В	2	R1	В	1		
S1	F1	F2	F3	F4	F5										В	5	R4	В	4	R3	В	3	R2	В	2	R1	В	1

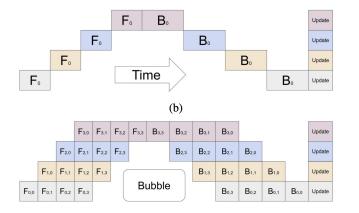
(b) Gpipe Schedule

Model Parallelism: on Tensor Level



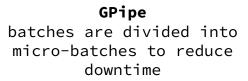
⁽b) Self-Attention

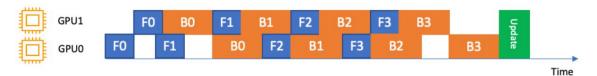
Pipeline Parallelism



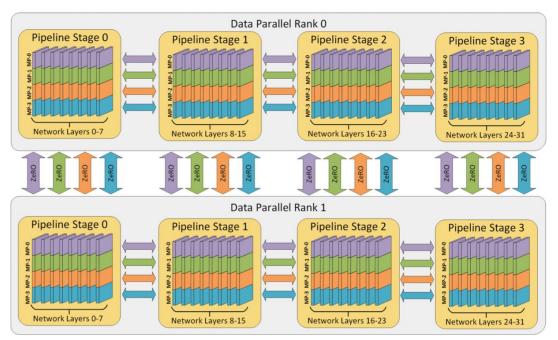
Interleaved Pipeline: Varuna, SageMaker, DeepSpeed

Backward for the first micro-batch is computed earlier than forward for the second micro-batch





3D Parallelism: PP+TP+DP(ZeRO)



32 GPUs are used: 4 groups tesor-parallelism * 4 groups pipeline-parallelism * 2 groups data-parallelism

MP-n denotes tensor-parallelism

Optimal Strategies for Pipeline Parallelism

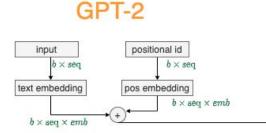
Paper	FlexFlow	PipeDream	PipeDream- 2BM	Piper
Types of parallelism	tensor-, model-, data- , operator-	data-, pipeline-	data-, pipeline-	data-, tensor- , pipeline-
Method for hyperparameters optimization	MCMC	Dynamic Programming	Dynamic Programming	Dynamic Programming
Activation recomputation during gradient computation (Activation checkpointing)	-	-	+	+
Activation offloading to CPU	-	-	-	-
Application	CNNs	CNNs	Transformers	Transformers

None of the known approaches use:

- activation offloading to the CPU, or
- a combination of two methods, recomputation of activations when computing gradients and offloading activations to CPU.

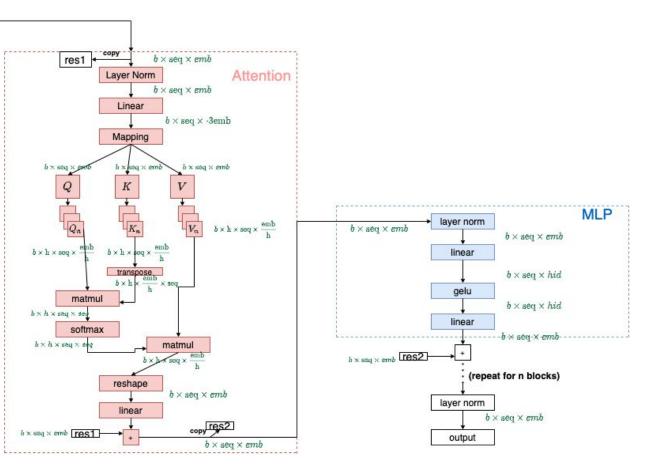
Activation Checkpointing & Offloading to CPU

Computational Graph for GPT-2



Example: transformer block from GPT-2 model contains:

- 1. Layer normalizations
- 2. Linear layers
- 3. Attention layer
- 4. GELU activation



GPT-2 Profiling: Memory

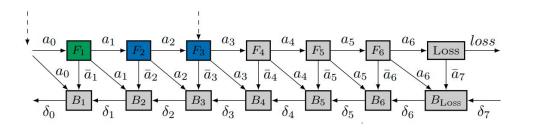
Memory in GB required to store all activations, depending on the batch size and the length of the token sequence.

The memory limit of one GPU V100-16GB is highlighted in red.

Total size of gpt2 model activations in GB 512 62 12.4 024 8.4 sequence_length 8.0 2560 3072 16 28 ź 8 20 24 32 64 128 batch size

Methods to Reduce Activations Memory: Rotor

□ Saving only part of activations in the forward pass and recomputing the rest during gradients computation;

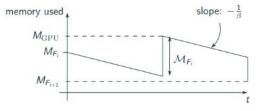


- + saves memory
 - slows down training: when computing gradients, you have to recompute activations

Sequence

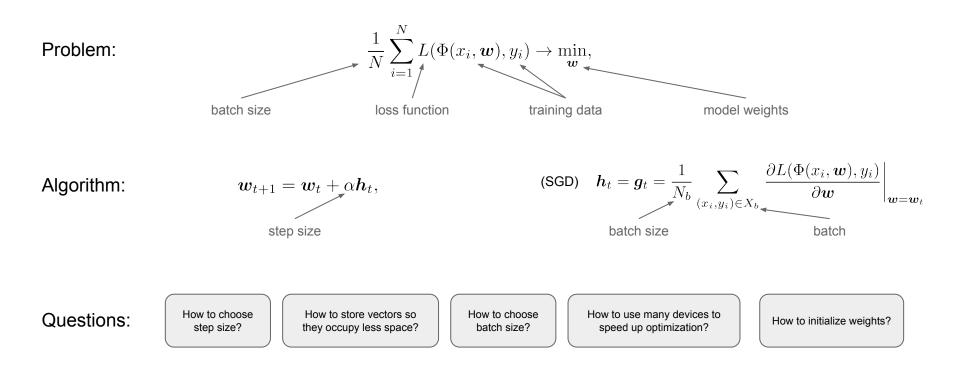
 $F_1^c, F_2^n, F_3^n, F_4^e, F_5^e, F_6^e, Loss, B_{Loss}, B_6, B_5, B_4, F_1^c, F_2^n, F_3^e, B_3, F_1^e, F_2^e, B_2, B_1$

Sending activations to CPU and loading from CPU as needed to calculate gradients;



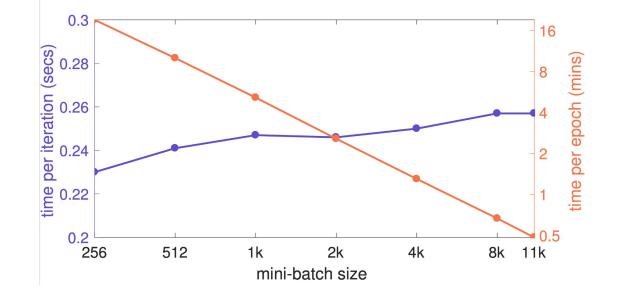
- + saves memory
- slows down training at low bandwidth $\boldsymbol{\beta}$

Optimization of Large Scale Models



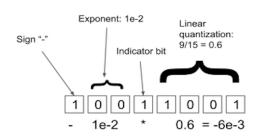
Using batches of bigger sizes

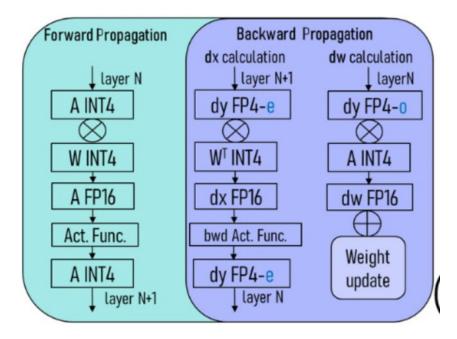
- Training a model with a large batch takes less time due to parallelism.
- However, with a simple increase in the batch, the generalizing ability of the model is worse.
- When the batch size increases by k times, the step size must be increased by k times.
- Increasing the step should be carried out gradually (warmup – phase of the first few epochs).
- Layer-by-layer step size change allows you to increase the batch even more.



Using low-bit formats for data storage

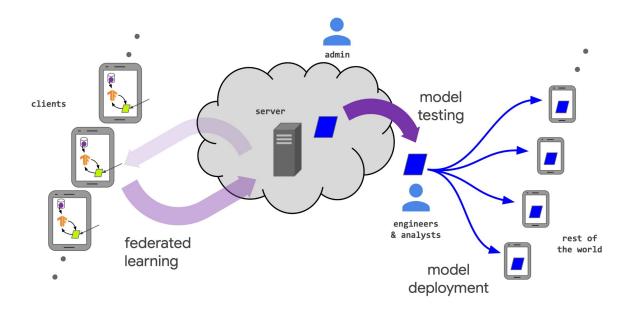
- The use of floating point numbers and block quantization are essential.
- The bitsandbytes library from Facebook contains 8-bit optimizers



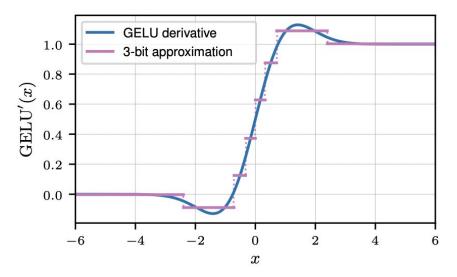


Distributed training and federated learning

- By using a large number of parallel computers, you can increase the batch and speed up training.
- Communications can be optimized by transmitting low-rank representations of gradients (PowerSGD and GradZIP methods); sparsification of gradients (Sketched SGD) or quantization of gradients.
- It is possible to do multiple local gradient descent steps on the GPU before forwarding to avoid local minima (post-local SGD).



Approximate Activation Gradients: Few-bit Backward

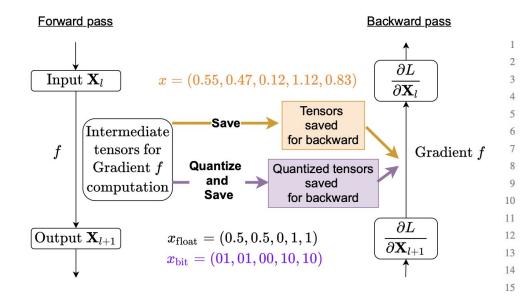


$$\mathbf{X}_{l+1} = f(\mathbf{X}_l)$$

$$rac{\partial L}{\partial \mathbf{X}_l} = rac{\partial L}{\partial \mathbf{X}_{l+1}} f'(\mathbf{X}_l),$$

Figure 1. Optimized 3-bit piecewise-constant approximation of the derivative of the GELU activation function.

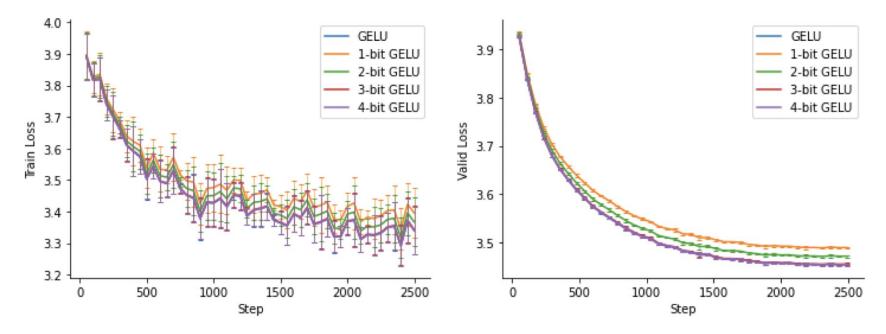
Approximate Activation Gradients: Few-bit Backward



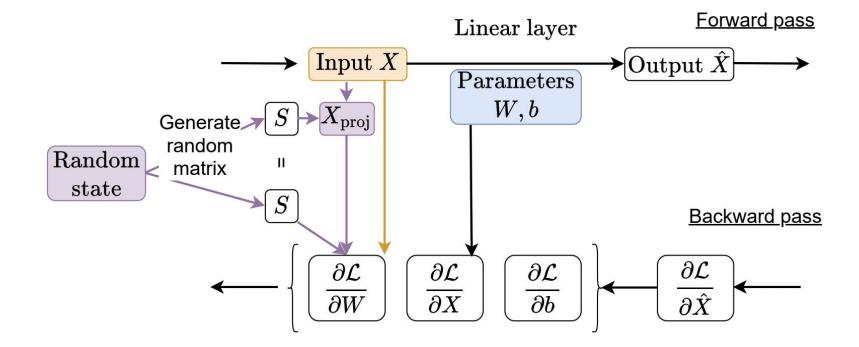
```
# Globally stored
# piecewise-constant
# approximation parameters
s = [...]
y = [...]
def forward(X):
    X_pos = sortedsearch(s, X)
    save_for_backward(X_pos)
    return f(X)
def backward(dLdY):
    X_pos = get_saved_for_backward()
```

```
return dLdY * y[X_pos]
```

Approximate Activation Gradients: Few-bit Backward



Approximate matrix multiplication: Randomized Backward



Approximate matrix multiplication: Randomized Backward

Algorithm 1 Forward and backward pass through a linear layer with a randomized matrix multiplication.

function FORWARD(X, W, b) $\hat{X} \leftarrow XW^{\top} + \mathbf{1}_{B}b^{\top}$ Generate pseudo random number generator (PRNG) state and corresponding random matrix S $X_{\text{proj}} \leftarrow S^{\top}X$ Save X_{proj} and PRNG state for the backward pass. return Y end function

```
function BACKWARD(\partial_{\hat{X}} \mathcal{L}, W, b, X_{\text{proj}})

\partial_X \mathcal{L} \leftarrow \partial_{\hat{X}} \mathcal{L} \cdot W^\top

Rematerialize matrix S from the PRNG state saved in

the forward pass.

\partial_W \mathcal{L} \leftarrow (\partial_{\hat{X}} \mathcal{L}^\top \cdot S) \cdot X_{\text{proj}}

\partial_b \mathcal{L} \leftarrow \partial_{\hat{X}} \mathcal{L}^\top \mathbf{1}_B

return \partial_X \mathcal{L}, \partial_W \mathcal{L}, \partial_b \mathcal{L}

end function
```

Approximate gradients

	Task	Batch Size	GELU	Linear Layer	Peak Memory, GiB	Saving, %
1	MRPC	128	Vanilla	Vanilla	11.30	0.0
2	MRPC	128	3-bit	Vanilla	9.75	13.8
3	MRPC	128	Vanilla	Randomized	9.20	18.6
4	MRPC	128	3-bit	Randomized	7.60	32.7