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Large scale deep learning models

2

● Standard way to train: stochastic gradient descent
● For many domains, it has been found that larger models and larger datasets give better 

performance
● It includes: natural language processing (NLP), self-supervised learning, vision 

transformers, contrastive language image pretraining, etc.

The time when you can train a large model on 1 GPU or on several GPUs is 
quickly going away! 



Challenges in training 
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Two challenges: 

● Computational time 

● Memory for the model and batch



Some computational costs
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● CLIP model: 
○ 18 days on 592 V100 GPUs (ResNet backbone)
○ 12 days on 256 V100 GPUs

● DALLE-E model: 1024 V100 GPU

● VIT model: 2500 TPU v3 core-days



Recent «world record»: Megatron-LM
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https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-me
gatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-langu
age-model/



How to train a big model?
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● We have: the model and the data. 
● We train using stochastic gradient descent (SGD) 
● Given a batch  of size 
● We compute: forward , backward 



What is computed
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For a backward pass, we need to store activations!
They consume 0.1 - 10x of the memory of the model (depending on the batch 
size)



Methods to Train Large Neural Networks

https://arxiv.org/abs/2202.10435



Types of Parallelism



Data Parallelism

  Data parallelism:
+ speeds up training
- weights and 

gradients must fit 
on the same device



Data Parallelism using ZeRO

  Data parallelism using ZeRO: 
+ you can train models that 

do not fit
on one device

- increases the number of 
transfers between devices



Model Parallelism On tensor level
(“MP”, “Horizontal MP”)

On layers’ level
(“Naive MP”, “Vertical MP”)

To reduce GPU idle time, several 
approaches have been 
developed to organize a data 
pipeline between devices: 
GPipe, Megatron-LM, Varuna.

+ you can train models that 
do not fit on one device

- bad GPU utilization: the 
device waits for the output 
of the previous layer of the 
model



Model Parallelism: on Tensor Level
Tensor parallelism for Transformer



Pipeline Parallelism

GPipe
batches are divided into 
micro-batches to reduce 

downtime

Interleaved Pipeline: Varuna, SageMaker, DeepSpeed

Backward for the first micro-batch is computed 
earlier than forward for the second micro-batch



3D Parallelism: PP+TP+DP(ZeRO)

32 GPUs are used: 4 groups tesor-parallelism * 4 groups pipeline-parallelism * 2 groups data-parallelism

MP-𝑛 denotes tensor-parallelism



Optimal Strategies for Pipeline Parallelism

None of the known approaches use:
● activation offloading to the CPU, or
● a combination of two methods, recomputation of activations when computing gradients and 

offloading activations to CPU.



Activation Checkpointing & 
Offloading to CPU



Computational Graph for GPT-2

Example: transformer block 
from GPT-2 model contains:

1. Layer normalizations
2. Linear layers
3. Attention layer
4. GELU activation



GPT-2 Profiling: Memory

Memory in GB required to store all 
activations, depending on the batch 
size and the length of the token 
sequence.

The memory limit of one GPU 
V100-16GB is highlighted in red.



Methods to Reduce Activations Memory: Rotor
❏ Saving only part of  activations in the forward pass and recomputing the 

rest during gradients computation;

❏ Sending activations to CPU and loading from CPU as needed to calculate 
gradients;

+ saves memory
- slows down training: 

when computing 
gradients, you have to 
recompute activations

+ saves memory
- slows down training at 

low bandwidth β



Optimization Methods



Optimization of Large Scale Models

loss function model weightsbatch size training data

Problem:

Algorithm:

batch size batchstep size

(SGD)

Questions: How to choose 
step size?

How to choose 
batch size?

How to store vectors so 
they occupy less space?

How to use many devices to 
speed up optimization? How to initialize weights?



Using batches of bigger sizes

● Training a model with a large 
batch takes less time due to 
parallelism.

● However, with a simple increase 
in the batch, the generalizing 
ability of the model is worse.

● When the batch size increases by 
k times, the step size must be 
increased by k times.

● Increasing the step should be 
carried out gradually (warmup - 
phase of the first few epochs).

● Layer-by-layer step size change 
allows you to increase the batch 
even more.

Optimization Methods



Using low-bit formats for 
data storage

● The use of floating point 
numbers and block 
quantization are essential.

● The bitsandbytes library 
from Facebook contains 
8-bit optimizers

Optimization Methods



Distributed training and 
federated learning

● By using a large number of 
parallel computers, you can 
increase the batch and speed up 
training.

● Communications can be optimized 
by transmitting low-rank 
representations of gradients 
(PowerSGD and GradZIP methods); 
sparsification of gradients 
(Sketched SGD) or quantization of 
gradients.

● It is possible to do multiple 
local gradient descent steps on 
the GPU before forwarding to 
avoid local minima (post-local 
SGD).

Optimization Methods



Approximate Activation Gradients: Few-bit Backward



Approximate Activation Gradients: Few-bit Backward



Approximate Activation Gradients: Few-bit Backward



Approximate matrix multiplication: Randomized Backward



Approximate matrix multiplication: Randomized Backward



Approximate gradients


