Deciding Non-Compressible Blocks in Sparse Direct Solvers using Incomplete Factorization

Esragul Korkmaz, Mathieu Faverge, Grégoire Pichon and Pierre Ramet

- 1. K-Way Clustering
- 2. Non-Compressible Blocks Decision
- 3. Experiments

K-Way Clustering

Nested Dissection

Figure 1: Regular cube with two levels of nested dissection. The right figure shows the first (grey) separator and the second level separator traces (red and green) on it.

- Recursive method
- Generates two balanced parts with minimum size separator

Discussions: Ordering within separator does not change fill-in

- => Can be improved for granularity
- => Can be improved for compressibility

Reordering

Figure 2: $8 \times 8 \times 8$ Laplacian partitioned using SCOTCH with reordering with smart splitting. Zoomed figure shows the total update counts on the each block. The right figure represents the clustering of the unknowns inside the first separator.

K-Way Clustering

clusters of K-Way

Figure 3: $8 \times 8 \times 8$ Laplacian partitioned using SCOTCH with K-Way clustering. Zoomed figure shows the total update counts on the each block. The right figure represents the clustering of the unknowns inside the first separator.

of K-Wav

Non-Compressible Blocks Decision

Block Low-Rank (BLR) Compression Format

Figure 4: BLR representation of a dense matrix which is clustered into four. Brown color shows the dense diagonal blocks, while the blue color stands for the low-rank representation of the compressed matrices.

- PASTIX sparse solver uses BLR
- Diagonal blocks are dense
- Off-diagonal blocks are compressed through some admissibility criteria
- Two scenario depending on when to compress:
 - * Minimal Memory
 - * Just in Time

Compression Scenarios

Algorithm 1 Minimal Memory - Just in Time Scenarios

- 1: for k=1 to N_{cblk} do
- 2: Compress(A_{ij}) // Compress blocks
- 3: end for
- 4: for k=1 to N_{cblk} do
- 5: Factorize
- 6: for each off-diagonal block A_{ij} in cblk do
- 7: Compress(A_{ij}) // Compress blocks
- 8: end for
- 9: Solve
- 10: Update
- $11: \ \text{end for} \\$
- Minimal Memory Compression before any numerical operations
- ✓ Reduces memory footprint
- × Runs in long time
- Just in Time Panel-wise compression during factorization
- $\checkmark\,$ Eliminates costly low-rank operations
- \checkmark Reduces time to solution
- imes Uses memory as much as in full rank

Incomplete LU (ILU) Factorization

Figure 5: Fill-in levels of the coefficients during elimination.

Algorithm 2 Symbolic ILU(<i>maxlevel</i>) Factorization	
1:	for a _{ij} in A do
2:	if $a_{ij} \neq 0$ then
3:	$lev(a_{ij}) = 0$
4:	else
5:	$lev(a_{ij}) = \infty$
6:	end if
7:	end for
8:	for $k=1$ to n-1 do
9:	for $i=k+1$ to n do
10:	if $lev(a_{ik}) < maxlevel$ then
11:	for $j=k+1$ to n do
12:	$lev(a_{ij}) = min(lev(a_{ij}), lev(a_{ik}) + lev(a_{kj}) + 1$
13:	end for
14:	end if
15:	end for

16: end for

- LU factorization: A = LU
- ILU factorization: A = LU + R
- As fill-in level increases, the coefficient value gets lower
- Can be performed in block-wise manner
- Preselect blocks with lower levels:
- * Preselected blocks are compressed during factorization
- * All other blocks are compressed in the beginning
- Aim:
 - * Preselected blocks do not improve memory footprint much

7

- \times Little more extra memory usage
- Improve time to solution drastically

New ILU(maxlevel) Heuristic

Algorithm 3 Minimal Memory - Just in Time - ILU(maxlevel) Scenarios

- 1: for k=1 to N_{cblk} do
- 2: **if** $level(A_{ij}) > maxlevel$ **then**
- 3: Compress(A_{ij}) // Compress blocks
- 4: end if
- 5: end for
- 6: for k=1 to N_{cblk} do
- 7: Factorize
- 8: for each off-diagonal block A_{ii} in cblk do
- 9: **if** $level(A_{ij}) \le maxlevel$ **then**
- **10**: Compress (A_{ij}) // Compress blocks
- 11: end if
- 12: end for
- 13: Solve
- 14: Update
- 15: end for

Experiments

Reordering VS K-Way (Minimal Memory)

Figure 6: Minimal Memory scenario profiles. The x-axis stands for $\frac{method}{optimal} - 1$. The y-axis stands for 31 real-case matrices.

- K-Way provides:
- ✓ Reduced memory footprint
- ✓ Improved time/flops for high precision

Reordering VS K-Way (Just in Time)

Figure 7: Just in Time scenario profiles. The x-axis stands for $\frac{method}{optimal} - 1$. The y-axis stands for 31 real-case matrices.

- K-Way provides:
- \checkmark Reduced memory footprint
- ✓ Improved time/flops

Compressibility

- K-Way reduces compressibility of low levels
- => Better for the new heuristic
 - Level 0 is not very compressible for both precisions
 - Level 1 is not very compressible for high precisions
- => Adopt ILU(0) for low precision
- => Adopt ILU(1) for high precision
- Figure 8: Compressibility figures for 10^{-8} (at the top) and 10^{-12} (at the bottom).

Compressibility

- K-Way reduces compressibility of low levels
- => Better for the new heuristic
 - Level 0 is not very compressible for both precisions
 - Level 1 is not very compressible for high precisions
- => Adopt ILU(0) for low precision
- => Adopt ILU(1) for high precision
 - Expected huge speedup as ratio of preselected blocks is high

Figure 9: Compressibility figures for 10^{-8} (at the top) and 10^{-12} (at the bottom).

ILU(maxlevel) Heuristic in Sequential (Reordering vs K-Way)

Figure 10: The x-axis stands for $\frac{method}{optimal}$ - 1. The y-axis stands for 31 real-case matrices.

 $\checkmark\,$ K-Way always improves the new heuristic in terms of time, flops and memory usage

ILU(maxlevel) Heuristic in Sequential (K-Way)

Figure 11: The x-axis stands for $\frac{method}{optimal} - 1$. The y-axis stands for 31 real-case matrices.

- \checkmark Highly improved flops/time with new heuristic as levels increases
- × Memory usage should be under control:
- => Level 0 is for low precision
- => Level 1 is for high precision

ILU(*maxlevel*) Heuristic in Multithreaded (Reordering vs K-Way)

Figure 12: The x-axis stands for $\frac{method}{optimal}$ – 1. The y-axis stands for 31 real-case matrices. Experiments used 24 threads.

$\checkmark\,$ K-Way improves the new heuristic in terms of time

ILU(maxlevel) Heuristic in Multithreaded (K-Way)

Figure 13: The x-axis stands for $\frac{method}{optimal}$ – 1. The y-axis stands for 31 real-case matrices. Experiments used 24 threads.

- Level 0 is for low precision
- Level 1 is for high precision
- \checkmark New heuristic is as fast as Just in Time

Conclusion/Future Work

- K-Way improves all memory footprint, flops and time to solution for Minimal Memory in high precision
- K-Way always improves flops and time to solution for Just in Time
- New heuristic in sequential provides huge speedup and reduces flops with slight memory increase
- New heuristic in multithreaded is even as fast as Just in Time
- New heuristic should be used with K-Way
- Future work:
 - * Tuning between ILU(0) and ILU(1) according to precision in PASTIX
 - * Further improving the compressibility by aligning the traces in the nested dissection better¹

¹Grégoire Pichon. On the use of low-rank arithmetic to reduce the complexity of parallel sparse linear solvers based on direct factorization techniques. PhD Thesis. Université de Bordeaux, 2018.

Thank You!

ILU(*maxlevel*) Heuristic in Sequential (Reordering)

Figure 14: The x-axis stands for $\frac{method}{optimal} - 1$. The y-axis stands for 31 real-case matrices.

- \checkmark Highly improved flops/time with new heuristic as levels increases
- × Memory usage should be under control:
 - Level 0 is for low precision
 - Level 1 is for high precision

All Sequential Results Together

Figure 15: The x-axis stands for $\frac{method}{optimal}$ – 1. The y-axis stands for 31 real-case matrices.

All Multithreaded Results Together

Figure 16: The x-axis stands for $\frac{method}{optimal}$ – 1. The y-axis stands for 31 real-case matrices. Experiments used 24 threads.