
Deciding Non-Compressible Blocks in Sparse

Direct Solvers using Incomplete Factorization

Esragul Korkmaz, Mathieu Faverge, Grégoire Pichon and Pierre Ramet



Table of contents

1. K-Way Clustering

2. Non-Compressible Blocks Decision

3. Experiments

1



K-Way Clustering



Nested Dissection

Figure 1: Regular cube with two levels of nested dissection. The right figure shows the first (grey)

separator and the second level separator traces (red and green) on it.

- Recursive method
- Generates two balanced parts with minimum size separator

Advantage

X Reduces fill-in and improves paral-

lelism

Discussions: Ordering within separa-

tor does not change fill-in

=> Can be improved for granularity

=> Can be improved for compressibility

2



Reordering

5

4

4

3

9

2

2

3

3 9

(a) Symbolic factorization

of reordering

(b) First separator

clusters of reordering

Figure 2: 8× 8× 8 Laplacian partitioned using Scotch with reordering with smart splitting.

Zoomed figure shows the total update counts on the each block. The right figure represents the

clustering of the unknowns inside the first separator.

Aim: Improve granularity

X Reduced number of updates on blocks

Discussions: Clustering among far

nodes of the graph

Low separator compressibility

3



K-Way Clustering

5

5

6

6

12

2

2

3

3 18

(a) Symbolic factorization

of K-Way

(b) First separator

clusters of K-Way

Figure 3: 8× 8× 8 Laplacian partitioned using Scotch with K-Way clustering. Zoomed figure

shows the total update counts on the each block. The right figure represents the clustering of the

unknowns inside the first separator.

Aim: Clustering with small diameter

and fewer neighbors

X High separator compressibility

Discussions: Increased number of up-

dates on blocks

=> Reordering within clusters

X Still improved granularity

Worse granularity than reordering

4



Non-Compressible Blocks

Decision



Block Low-Rank (BLR) Compression Format

Full Rank

Low Rank

Figure 4: BLR representation of a dense matrix which is clustered into four. Brown color shows

the dense diagonal blocks, while the blue color stands for the low-rank representation of the

compressed matrices.

- PaStiX sparse solver uses BLR

- Diagonal blocks are dense

- Off-diagonal blocks are compressed through some admissibility criteria

- Two scenario depending on when to compress:

* Minimal Memory

* Just in Time

5



Compression Scenarios

Algorithm 1 Minimal Memory - Just in Time Scenarios
1: for k=1 to Ncblk do

2: Compress(Aij ) // Compress blocks

3: end for

4: for k=1 to Ncblk do

5: Factorize

6: for each off-diagonal block Aij in cblk do

7: Compress(Aij ) // Compress blocks

8: end for

9: Solve

10: Update

11: end for

- Minimal Memory - Compression before any numerical operations

X Reduces memory footprint

Runs in long time

- Just in Time - Panel-wise compression during factorization

X Eliminates costly low-rank operations

X Reduces time to solution

Uses memory as much as in full rank
6



Incomplete LU (ILU) Factorization

level 1 level 1

4
3
2
1

1 2 3 4 5

5 3 21 4

5 level 3

Figure 5: Fill-in levels of the coefficients during elimination.

Algorithm 2 Symbolic ILU(maxlevel) Factorization

1: for aij in A do

2: if aij 6= 0 then

3: lev(aij ) = 0

4: else

5: lev(aij ) =∞
6: end if

7: end for

8: for k=1 to n-1 do

9: for i=k+1 to n do

10: if lev(aik ) < maxlevel then

11: for j=k+1 to n do

12: lev(aij ) = min(lev(aij ), lev(aik )+lev(akj )+1)

13: end for

14: end if

15: end for

16: end for

- LU factorization: A = LU

- ILU factorization: A = LU + R

- As fill-in level increases, the coefficient value

gets lower

- Can be performed in block-wise manner

- Preselect blocks with lower levels:

* Preselected blocks are compressed during

factorization

* All other blocks are compressed in the

beginning

- Aim:

* Preselected blocks do not improve memory

footprint much

Little more extra memory usage

X Improve time to solution drastically 7



New ILU(maxlevel) Heuristic

Algorithm 3 Minimal Memory - Just in Time - ILU(maxlevel) Scenarios

1: for k=1 to Ncblk do

2: if level(Aij) > maxlevel then

3: Compress(Aij) // Compress blocks

4: end if

5: end for

6: for k=1 to Ncblk do

7: Factorize

8: for each off-diagonal block Aij in cblk do

9: if level(Aij) <= maxlevel then

10: Compress(Aij) // Compress blocks

11: end if

12: end for

13: Solve

14: Update

15: end for
8



Experiments



Reordering VS K-Way (Minimal Memory)

Figure 6: Minimal Memory scenario profiles. The x-axis stands for method
optimal − 1. The y-axis stands

for 31 real-case matrices.

- K-Way provides:

X Reduced memory footprint

X Improved time/flops for high precision 9



Reordering VS K-Way (Just in Time)

Figure 7: Just in Time scenario profiles. The x-axis stands for method
optimal − 1. The y-axis stands for 31

real-case matrices.

- K-Way provides:

X Reduced memory footprint

X Improved time/flops 10



Compressibility

Figure 8: Compressibility figures for 10−8 (at the top) and 10−12 (at

the bottom).

- K-Way reduces

compressibility of low

levels

=> Better for the new

heuristic

- Level 0 is not very

compressible for both

precisions

- Level 1 is not very

compressible for high

precisions

=> Adopt ILU(0) for low

precision

=> Adopt ILU(1) for high

precision

11



Compressibility

Figure 9: Compressibility figures for 10−8 (at the top) and 10−12 (at

the bottom).

- K-Way reduces

compressibility of low

levels

=> Better for the new

heuristic

- Level 0 is not very

compressible for both

precisions

- Level 1 is not very

compressible for high

precisions

=> Adopt ILU(0) for low

precision

=> Adopt ILU(1) for high

precision

- Expected huge speedup as

ratio of preselected blocks

is high

12



ILU(maxlevel) Heuristic in Sequential (Reordering vs K-Way)

Figure 10: The x-axis stands for method
optimal − 1. The y-axis stands for 31 real-case matrices.

X K-Way always improves the new heuristic in terms of time, flops and

memory usage
13



ILU(maxlevel) Heuristic in Sequential (K-Way)

Figure 11: The x-axis stands for method
optimal − 1. The y-axis stands for 31 real-case matrices.

X Highly improved flops/time with new heuristic as levels increases

Memory usage should be under control:

=> Level 0 is for low precision

=> Level 1 is for high precision 14



ILU(maxlevel) Heuristic in Multithreaded (Reordering vs K-

Way)

Figure 12: The x-axis stands for method
optimal − 1. The y-axis stands for 31 real-case matrices.

Experiments used 24 threads.

X K-Way improves the new heuristic in terms of time 15



ILU(maxlevel) Heuristic in Multithreaded (K-Way)

Figure 13: The x-axis stands for method
optimal − 1. The y-axis stands for 31 real-case matrices.

Experiments used 24 threads.

- Level 0 is for low precision

- Level 1 is for high precision

X New heuristic is as fast as Just in Time 16



Conclusion/Future Work

- K-Way improves all memory footprint, flops and time to solution for

Minimal Memory in high precision

- K-Way always improves flops and time to solution for Just in Time

- New heuristic in sequential provides huge speedup and reduces flops

with slight memory increase

- New heuristic in multithreaded is even as fast as Just in Time

- New heuristic should be used with K-Way

- Future work:

* Tuning between ILU(0) and ILU(1) according to precision in PaStiX

* Further improving the compressibility by aligning the traces in the

nested dissection better1

1Grégoire Pichon. On the use of low-rank arithmetic to reduce the complexity of

parallel sparse linear solvers based on direct factorization techniques. PhD Thesis.

Université de Bordeaux, 2018.

17



Thank You!

18



ILU(maxlevel) Heuristic in Sequential (Reordering)

Figure 14: The x-axis stands for method
optimal − 1. The y-axis stands for 31 real-case matrices.

X Highly improved flops/time with new heuristic as levels increases

Memory usage should be under control:

- Level 0 is for low precision

- Level 1 is for high precision 19



All Sequential Results Together

Figure 15: The x-axis stands for method
optimal − 1. The y-axis stands for 31 real-case matrices.

20



All Multithreaded Results Together

Figure 16: The x-axis stands for method
optimal − 1. The y-axis stands for 31 real-case matrices.

Experiments used 24 threads.

21


	K-Way Clustering
	Non-Compressible Blocks Decision
	Experiments

