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0 - Context

In order to evaluate the electromagnetic behavior of 3D objects, we need to solve the
Maxwell equations.

Numerical simulation of Maxwell Equations beforehand the conception
↓

Need to solve a large and sparse linear system of equations Ax = b
↓

Requires an efficient and scalable solver

A domain decomposition method is used in this context, but limitations appear as the
computing resources are growing :

• Increase in the number of sub-domains ⇒ Convergence is slower
• Increase in the size of the sub-domains ⇒ Increase in computational complexity

We need to investigate an alternative method to domain decomposition :
multigrid methods.
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1.1 - Basic principle of multigrid methods

Figure 1: V-cycle of a multigrid method

In this method, the computation of the
solution x is accelerated thanks to a hier-
archy of coarse problems.

We introduce :
• Al : Matrix of the level l

• Sν
0 : ν smoother iterations on the

level l

• Pl : Interpolation operator of size
nl−1 × nl

• Rl : Restriction operator of size
nl × nl−1

In most application

R = PH . (1)
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1.2 - Illustration of a two-level cycle on a 1D Laplace problem

Let’s illustrate one iteration of a two-level cycle on a 1D Laplace Problem. Here, A is SPD.
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2
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• Here, x is chosen randomly, and b = Ax .

• ∼x approximation of x

• e = x −∼x is the remaining information to capture
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1.2 - Illustration of a two-level cycle on a 1D Laplace problem

Let’s illustrate one iteration of a two-level cycle on a 1D Laplace Problem. Here, A is SPD.

PT

2
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P

A

(PT AP)−1

• ∼x approximation of x , e = x − ∼x
• The smoother captured oscillatory information
• e is geometrically smooth
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1.2 - Illustration of a two-level cycle on a 1D Laplace problem

Let’s illustrate one iteration of a two-level cycle on a 1D Laplace Problem. Here, A is SPD.

PT

2
3 D−1 2

3 D−1

P

A

(PT AP)−1

• ∼x approximation of x , e = x − ∼x
• The coarse correction captured the smooth part
• e contains remaining high frequency information
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1.2 - Illustration of a two-level cycle on a 1D Laplace problem

Let’s illustrate one iteration of a two-level cycle on a 1D Laplace Problem. Here, A is SPD.

PT

2
3 D−1 2

3 D−1

P

A

(PT AP)−1

• ∼x approximation of x , e = x − ∼x
• The smoother captured remaining oscillations

• ∼x is converging toward x !
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1.3 - Illustration of the complementarity principle
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Figure 2: Convergence rates of the different operators

• The lowest eigenvalues are damped by the coarse correction
• The highest eigenvalues are damped by the smoother
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1.4 - Multigrid applied to the Laplace Problem

(Laplace Problem) ⇔
{

−∆u = f on Ω
u|∂Ω = 0 (2)

Applying a 2nd order finite difference scheme on a uniform discretization of Ω in 1D, and
using a local Fourier analysis, it yields

∀j = 1, . . . , n , λj(A) = 2h−2(1 − cos(jπh)) , vj(A) = [sin(ljπh)]nl=1
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Figure 3: Eigenvalues
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Figure 4: Few of the lowest eigenvectors

The complementarity principle is easy to satisfy
• λj(A) > 0 ⇒ Usual relaxation methods are efficient for capturing HF eigenvectors
• The NKS is geometrically smooth ⇒ Interpolation rules are easy to build in this case
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1.5 - Multigrid applied to the Helmholtz problem

(Helmholtz Problem) ⇔
{

−∆u −k2u = f sur Ω = [0, 1]
u|∂Ω = 0 (3)

Applying a 2nd order finite difference scheme on a uniform discretization of Ω in 1D, and
using a local Fourier analysis, it yields

∀j = 1, . . . , n, λj(A) = 2h−2(1 − cos(jπh)) −k2 , vj(A) = [sin(ljπh)]nl=1
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Figure 5: Eigenvalues
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Figure 6: Few of the lowest eigenvectors

Eigenvalues are shifted, the complementarity principle is now difficult to satisfy
• λj(A) > 0 ⇒ Requires adapted smoothers : Krylov iterations, normal equations
• The NKS is now oscillatory ⇒ Requires new interpolation rules
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2.1 - Introduction to the different notations

We seek a multilevel method able to solve a 2D Helmholtz Problem defined by

(Helmholtz Problem) ⇔
{

−∆u − k2u = f on Ω
∂nu − iku = 0 on ∂Ω

(4)

Let the error propagation matrix for the coarse correction of a two-level cycle be

EC = I − P(PHAP)−1PHA. (5)

Let the error propagation matrix for the smoother be

ES = I − S−1A (6)

where S−1 is an approximation of A−1.

Furthermore, we define :
• V0 : Eigenvectors associated to the lowest eigenvalues in absolute values
• V+ : Eigenvectors associated to the highest eigenvalues in absolute values
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2.2 - Smoother for Helmholtz

Target : Find a smoother able to damp V+, without touching V0.

Problem : V+ eigenvectors are either associated with negative or positive eigenvalues.

Alternative to usual multigrid smoothers :
• Krylov methods are good smoothers in the indefinite case but :

• They minimize ||r ||2 regardless of the eigenvalues
• They are non-linear because of their right-hand side dependence

• Chebyshev Polynomial Smoother built on normal equations will be considered
• Normal equations are helpful to damp both negative and positive eigenvalues
• The Chebyshev framework is practical to find a minimum polynomial within an interval
• This smoother has the following error propagation formula

q(A2) := I − p(A2)A2, (7)

giving for Av0 = λ0v0 ≈ 0

q(A2)v0 = (1 − p(λ2
0)λ

2
0)v0 ≈ v0 (8)

→ We seek a polynomial smoother p such that q is minimum in a given interval.
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2.3 - Normal Equation Polynomial Smoother

1 Choose an appropriate interval I = [xmin, xmax] where q must be minimum
2 Compute First Kind Chebyshev roots as best interpolation points within I

xi :=
xmax + xmin

2 +
xmax − xmin

2 cos

(
(2i − 1)π

2d

)
(9)

3 Construct the polynomial using the Lagrangian formula

q(xi) = 0 ⇔ p(xi) =
1
xi

, p(x) =
d∑

j=0

1
xj

d∏
i=0,i 6=j

x − xi

xj − xi
(10)
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Figure 7: Spectrum of the polynomial smoother error propagation matrix
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2.3 - Normal Equation Polynomial Smoother

1 Choose an appropriate interval I = [xmin, xmax] where q must be minimum
2 Compute First Kind Chebyshev roots as best interpolation points within I

xi :=
xmax + xmin

2 +
xmax − xmin

2 cos

(
(2i − 1)π
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)
(11)

3 Construct the polynomial using the Lagrangian formula
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Figure 8: Spectrum of the polynomial smoother error propagation matrix
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2.3 - Normal Equation Polynomial Smoother

1 Choose an appropriate interval I = [xmin, xmax] where q must be minimum
2 Compute First Kind Chebyshev roots as best interpolation points within I

xi :=
xmax + xmin

2 +
xmax − xmin

2 cos

(
(2i − 1)π

2d

)
(13)

3 Construct the polynomial using the Lagrangian formula

q(xi) = 0 ⇔ p(xi) =
1
xi

, p(x) =
d∑

j=0

1
xj

d∏
i=0,i 6=j

x − xi

xj − xi
(14)
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Figure 9: Spectrum of the polynomial smoother error propagation matrix
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3.1 - Introduction to the ideal framework

Target : Construct an interpolator P containing V0 in its range

From the theory, we can define, under SPD assumption of A, an ideal interpolator P∗
from coarse (C) and fine (F) variable selection operators

R
(nC×n)

: Ω 7→ C and SH

(nF×n)
: Ω 7→ F , (15)

such that
nC + nF = n and RS = 0. (16)

This operator is defined by

P∗ = (I − S(SHAS)−1SHA)RH (17)

and minimizes the quantity

µX = min
P

max
e 6=0

〈X(I − PR)e, (I − PR)e〉
〈Ae, e〉 . (18)

where X is a matrix defining the smoothing space.
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3.1 - Introduction to the ideal framework

Target : Construct an interpolator P containing V0 in its range

Exemple 1 : Let the coarse and fine selection operators be defined by

R = [ 0 InC ] and ST = [ InF 0 ]. (19)

After reorganizing A by coarse/fine blocks, such that

A =

[
SHAS SHARH

RAS RARH

]
=

[
Aff Afc
Acf Acc

]
,

the ideal interpolator can be written

P∗ =

[
−A−1

ff Afc
Icc

]
(20)

and the coarse matrix
AC = PH

∗ AP∗ = Acc − Acf A−1
ff Afc (21)

Here we can prove

E∗EF = (I − P∗(PH
∗ AP∗)

−1PH
∗ A)(I − S(SHAS)−1SHA) = 0 (22)
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3.1 - Introduction to the ideal framework

Target : Construct an interpolator P containing V0 in its range

Example 2 : Let the coarse and fine selection operators be defined by

RH = V0 and S = V+, (23)

with V0/V+ eigenvectors associated with lowest/highest eigenvalues. It yields

SHARH = V H
+

[
V0 V+

] [Diag(λ0) 0
0 Diag(λ+)

] [
V H

0
V H

+

]
V0 = 0,

so the ideal interpolator is defined by

P∗ = (I − S(SHAS)−1SHA)RH = RH = V0 (24)

and gives the coarse matrix
AC = Diag(λ0) (25)

Here again

E∗EF = (I − P∗(PH
∗ AP∗)

−1PH
∗ A)(I − S(SHAS)−1SHA) = 0 (26)
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3.1 - Introduction to the ideal framework

Target : Construct an interpolator P containing V0 in its range

Remark : The ideal framework requires A to be SPD.

↪→ However the reduction viewpoint is still valid : Removing orthogonal information
that the smoother captures will correct the coarse selection operator

Question : Are coarse selection operators in both previous examples good for Helmholtz?

• RH = [ 0 InC ]T is not relevant for Helmholtz
• RH = V0 is not practical (too expensive to compute and we need sparsity)

We can construct a better coarse selection operator RH for Helmholtz.

Idea : Construct fine interpolation rules RF of RH with a least-squares minimization
strategy from smoothed random vectors approximating the near-kernel space V0
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3.2 - Generation of a set of test vectors

First, we generate a set K of κ smoothed random vectors that approximates V0
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Figure 10: Eigen decomposition of a random vector (left) vs. smoothed random vector (right)
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3.2 - Generation of a set of test vectors

First, we generate a set K of κ smoothed random vectors that approximates V0
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Figure 11: Average eigen decomposition of the total set K
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3.3 - Building a better coarse selection operator

The Least-Squares Minimization strategy consists of constructing each fine interpolation
rule ri by minimizing the squared difference between fine values of the near-kernel can-
didate vectors and the interpolation from their connected coarse variables Ci .

∀i ∈ F , ri = argmin
r

κ∑
l=1

wl (Ki,l − r · KCi ,l)
2 := argmin

r
Li(r) (27)

Finding the minimum of the convex loss function Li is equivalent to solving

∇Li(ri) = 0. (28)

Equation (28) can be rewritten element-wise

∂Li(ri)

∂rij
=

κ∑
l=1

2wl(Ki,l − ri · KCi ,l)KCij ,l = 0 , ∀j ∈ [1, card(Ci)]. (29)

Finally, (29) leads to a system of linear equations to solve for each fine variable i

riKCi WKH
Ci = KiWKH

Ci (30)
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3.4 - Sparse approximation of the ideal interpolator

Using the ideal framework and the LSM strategy, let the coarse and fine selection
operators

R̂H = [ RF IC ]T , Ŝ = [ IF − RH
F ]T , (31)

where R̂H is the least squares operator with RF its fine variable interpolation block. We
define AF := ŜHAŜ. Following the ideal interpolator definition

P̂ := (I − ŜA−1
F ŜHA)R̂H (32)

However, P̂ requires the inverse of AF ! Instead

P̂ ≈ R̂H − ŜX−1
K ŜHAR̂H , (33)

where X−1
K is the best polynomial approximating A−1

F within the Krylov subspace K. In
practice, P̂ is approximated column-wise under sparsity constraints

Km
Pi =

{
Zibi , ZiAFZT

i Zibi , . . . , (ZiAFZT
i )m−1Zibi

}
, (34)

where bi := ŜHAR̂H
:,i , and Zi : Cn → CCard(Pi ) is the i th column associated sparsity

constraint operator, that restricts any full vector to the non-zero pattern Pi .
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4 - Benchmark

• 5-points stencil Cartesian discretization with a.b.c (∂nu − iku = 0 on ∂Ω)
• 10 points per wavelength (h = λ/10 ⇔ kh = 2π/10 ≈ 0.625)
• Multigrid parameters :

• Normal equations polynomial smoother of degree d = 3
• Number of test vectors tends to grow by a factor of 2 between each level
• Krylov sub-size m = 3 in the construction of P̂
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Figure 12: Number of iterations following the wavenumber k
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4 - Benchmark

Figure 13: Solution x of a Laplace Problem vs. a Helmholtz Problem
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5 - Conclusion and perspective

Helmholtz is difficult because :
• Negative components appear and require an adapted smoother
• The near-kernel space is oscillatory and needs adapted interpolation rules

⇒ We proposed an algebraic multigrid method that reaches those requirements up to a
certain limit.

Further researches will focus on :
1 Increasing the depth of the multigrid cycle
2 Sparsity has to be improved
3 Construct a better coarse selection operator that minimizes

∑κ
i ||K:,i − RHRK:,i ||2

4 Work on an adapted framework for Helmholtz
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