SIAM CSE 2023-02/26-03/03

Rob FALGOUT (LLNL)
Matthieu LECOUVEZ (CEA/CESTA) Pierre RAMET (INRIA) Clément RICHEFORT (CEA/CESTA)

DE LA RECHERCHE À L'INDUSTRIE

Toward a multigrid method for the Helmholtz equation

In order to evaluate the electromagnetic behavior of 3D objects, we need to solve the Maxwell equations.

Numerical simulation of Maxwell Equations beforehand the conception
Need to solve a large and sparse linear system of equations $A x=b$
\downarrow
Requires an efficient and scalable solver

A domain decomposition method is used in this context, but limitations appear as the computing resources are growing :

- Increase in the number of sub-domains \Rightarrow Convergence is slower
- Increase in the size of the sub-domains \Rightarrow Increase in computational complexity

We need to investigate an alternative method to domain decomposition : multigrid methods.

Table of contents

- 1. Principle of multigrid methods
- 1.1 - Principle of a multigrid cycle
- 1.2 - Illustration of a two-level cycle on a 1D Laplace problem
- 1.3 - Illustration of the complementarity principle
- 1.4 - Multigrid applied to the Laplace Problem
- 1.5 - Multigrid applied to the Helmholtz Problem
- 2. Smoother for Helmholtz
- 2.1 - Introduction to the different notations
- 2.2-Smoother for Helmholtz
- 2.3 - Normal equation polynomial smoother
- 3. Multigrid interpolation rules for Helmholtz
- 3.1 - Introduction to the ideal framework
- 3.2-Generation of a set of test vectors
- 3.3 - Building a better coarse selection operator
- 3.4 - Sparse approximation of the ideal interpolator
- 4. Benchmark
- 5. Conclusion and Perspectives

S_{0}^{ν} In this method, the computation of the solution x is accelerated thanks to a hierarchy of coarse problems.

We introduce :

- A_{I} : Matrix of the level I
- $S_{0}^{\nu}: \nu$ smoother iterations on the level I
- P_{l} : Interpolation operator of size $n_{l-1} \times n_{l}$
- R_{I} : Restriction operator of size $n_{l} \times n_{I-1}$

In most application

$$
\begin{equation*}
R=P^{H} \tag{1}
\end{equation*}
$$

Figure 1: V-cycle of a multigrid method

cea

Let's illustrate one iteration of a two-level cycle on a 1D Laplace Problem. Here, A is SPD.

- Here, x is chosen randomly, and $b=A x$.
- \tilde{x} approximation of x
- $e=x-\tilde{x}$ is the remaining information to capture

Let's illustrate one iteration of a two-level cycle on a 1D Laplace Problem. Here, A is SPD.

- \tilde{x} approximation of $x, e=x-\tilde{x}$
- The smoother captured oscillatory information
- e is geometrically smooth

Let's illustrate one iteration of a two-level cycle on a 1D Laplace Problem. Here, A is SPD.

- \tilde{x} approximation of $x, e=x-\tilde{x}$
- The coarse correction captured the smooth part
- e contains remaining high frequency information

cea 1.2 - Illustration of a two-level cycle on a 1D Laplace problem

Let's illustrate one iteration of a two-level cycle on a 1D Laplace Problem. Here, A is SPD.

- \tilde{x} approximation of $x, e=x-\tilde{x}$
- The smoother captured remaining oscillations
- \tilde{x} is converging toward x !

Cea 1.3 - Illustration of the complementarity principle

Figure 2: Convergence rates of the different operators

- The lowest eigenvalues are damped by the coarse correction
- The highest eigenvalues are damped by the smoother

$$
\text { (Laplace Problem) } \Leftrightarrow\left\{\begin{array}{c}
-\Delta u=f \text { on } \Omega \tag{2}\\
u_{\mid \partial \Omega}=0
\end{array}\right.
$$

Applying a $2^{\text {nd }}$ order finite difference scheme on a uniform discretization of Ω in $1 D$, and using a local Fourier analysis, it yields

Figure 3: Eigenvalues
Figure 4: Few of the lowest eigenvectors
The complementarity principle is easy to satisfy

- $\lambda_{j}(A)>0 \Rightarrow$ Usual relaxation methods are efficient for capturing HF eigenvectors
- The NKS is geometrically smooth \Rightarrow Interpolation rules are easy to build in this case
(Helmholtz Problem) $\Leftrightarrow\left\{\begin{array}{c}-\Delta u-k^{2} u=f \operatorname{sur} \Omega=[0,1] \\ u_{\mid \partial \Omega}=0\end{array}\right.$
Applying a $2^{\text {nd }}$ order finite difference scheme on a uniform discretization of Ω in 1 D , and using a local Fourier analysis, it yields

$$
\forall j=1, \ldots, n, \lambda_{j}(A)=2 h^{-2}(1-\cos (j \pi h))-k^{2}, \quad v_{j}(A)=[\sin (l j \pi h)]_{l=1}^{n}
$$

Figure 5: Eigenvalues

Figure 6: Few of the lowest eigenvectors

Eigenvalues are shifted, the complementarity principle is now difficult to satisfy

- $\lambda(A)>\theta \Rightarrow$ Requires adapted smoothers: Krylov iterations, normal equations
- The NKS is now oscillatory \Rightarrow Requires new interpolation rules
- 1. Principle of multigrid methods
- 1.1 - Principle of a multigrid cycle
- 1.2 - Illustration of a two-level cycle on a 1D Laplace problem
- 1.3 - Illustration of the complementarity principle
- 1.4 - Multigrid applied to the Laplace Problem
- 1.5 - Multigrid applied to the Helmholtz Problem
- 2. Smoother for Helmholtz
- 2.1 - Introduction to the different notations
- 2.2-Smoother for Helmholtz
- 2.3 - Normal equation polynomial smoother
- 3. Multigrid interpolation rules for Helmholtz
- 3.1 - Introduction to the ideal framework
- 3.2-Generation of a set of test vectors
- 3.3 - Building a better coarse selection operator
- 3.4 - Sparse approximation of the ideal interpolator
- 4. Benchmark
- 5. Conclusion and Perspectives

We seek a multilevel method able to solve a 2D Helmholtz Problem defined by

$$
\text { (Helmholtz Problem) } \Leftrightarrow\left\{\begin{array}{r}
-\Delta u-k^{2} u=f \text { on } \Omega \tag{4}\\
\partial_{n} u-i k u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Let the error propagation matrix for the coarse correction of a two-level cycle be

$$
\begin{equation*}
E_{\mathcal{C}}=I-P\left(P^{H} A P\right)^{-1} P^{H} A . \tag{5}
\end{equation*}
$$

Let the error propagation matrix for the smoother be

$$
\begin{equation*}
E_{S}=I-S^{-1} A \tag{6}
\end{equation*}
$$

where S^{-1} is an approximation of A^{-1}.

Furthermore, we define :

- V_{0} : Eigenvectors associated to the lowest eigenvalues in absolute values
- V_{+}: Eigenvectors associated to the highest eigenvalues in absolute values

Target: Find a smoother able to damp V_{+}, without touching V_{0}.
Problem: V_{+}eigenvectors are either associated with negative or positive eigenvalues.

Alternative to usual multigrid smoothers :

- Krylov methods are good smoothers in the indefinite case but:
- They minimize $\|r\|_{2}$ regardless of the eigenvalues
- They are non-linear because of their right-hand side dependence
- Chebyshev Polynomial Smoother built on normal equations will be considered
- Normal equations are helpful to damp both negative and positive eigenvalues
- The Chebyshev framework is practical to find a minimum polynomial within an interval
- This smoother has the following error propagation formula

$$
\begin{equation*}
q\left(A^{2}\right):=I-p\left(A^{2}\right) A^{2} \tag{7}
\end{equation*}
$$

giving for $A v_{0}=\lambda_{0} v_{0} \approx 0$

$$
\begin{equation*}
q\left(A^{2}\right) v_{0}=\left(1-p\left(\lambda_{0}^{2}\right) \lambda_{0}^{2}\right) v_{0} \approx v_{0} \tag{8}
\end{equation*}
$$

\rightarrow We seek a polynomial smoother p such that q is minimum in a given interval.
(1) Choose an appropriate interval $\mathcal{I}=\left[x_{\text {min }}, x_{\text {max }}\right]$ where q must be minimum
(2) Compute First Kind Chebyshev roots as best interpolation points within \mathcal{I}

$$
\begin{equation*}
x_{i}:=\frac{x_{\max }+x_{\min }}{2}+\frac{x_{\max }-x_{\min }}{2} \cos \left(\frac{(2 i-1) \pi}{2 d}\right) \tag{9}
\end{equation*}
$$

(3) Construct the polynomial using the Lagrangian formula

$$
\begin{equation*}
q\left(x_{i}\right)=0 \Leftrightarrow p\left(x_{i}\right)=\frac{1}{x_{i}}, p(x)=\sum_{j=0}^{d} \frac{1}{x_{j}} \prod_{i=0, i \neq j}^{d} \frac{x-x_{i}}{x_{j}-x_{i}} \tag{10}
\end{equation*}
$$

Figure 7: Spectrum of the polynomial smoother error propagation matrix
(1) Choose an appropriate interval $\mathcal{I}=\left[x_{\min }, x_{\max }\right]$ where q must be minimum
(2) Compute First Kind Chebyshev roots as best interpolation points within \mathcal{I}

$$
\begin{equation*}
x_{i}:=\frac{x_{\max }+x_{\min }}{2}+\frac{x_{\max }-x_{\min }}{2} \cos \left(\frac{(2 i-1) \pi}{2 d}\right) \tag{11}
\end{equation*}
$$

© Construct the polynomial using the Lagrangian formula

$$
\begin{equation*}
q\left(x_{i}\right)=0 \Leftrightarrow p\left(x_{i}\right)=\frac{1}{x_{i}}, p(x)=\sum_{j=0}^{d} \frac{1}{x_{j}} \prod_{i=0, i \neq j}^{d} \frac{x-x_{i}}{x_{j}-x_{i}} \tag{12}
\end{equation*}
$$

Figure 8: Spectrum of the polynomial smoother error propagation matrix
(1) Choose an appropriate interval $\mathcal{I}=\left[x_{\text {min }}, x_{\text {max }}\right]$ where q must be minimum
(2) Compute First Kind Chebyshev roots as best interpolation points within \mathcal{I}

$$
\begin{equation*}
x_{i}:=\frac{x_{\max }+x_{\min }}{2}+\frac{x_{\max }-x_{\min }}{2} \cos \left(\frac{(2 i-1) \pi}{2 d}\right) \tag{13}
\end{equation*}
$$

(3) Construct the polynomial using the Lagrangian formula

$$
\begin{equation*}
q\left(x_{i}\right)=0 \Leftrightarrow p\left(x_{i}\right)=\frac{1}{x_{i}}, p(x)=\sum_{j=0}^{d} \frac{1}{x_{j}} \prod_{i=0, i \neq j}^{d} \frac{x-x_{i}}{x_{j}-x_{i}} \tag{14}
\end{equation*}
$$

Figure 9: Spectrum of the polynomial smoother error propagation matrix

- 1. Principle of multigrid methods
- 1.1 - Principle of a multigrid cycle
- 1.2 - Illustration of a two-level cycle on a 1D Laplace problem
- 1.3 - Illustration of the complementarity principle
- 1.4 - Multigrid applied to the Laplace Problem
- 1.5 - Multigrid applied to the Helmholtz Problem
- 2. Smoother for Helmholtz
- 2.1 - Introduction to the different notations
- 2.2 - Smoother for Helmholtz
- 2.3 - Normal equation polynomial smoother
- 3. Multigrid interpolation rules for Helmholtz
- 3.1 - Introduction to the ideal framework
- 3.2-Generation of a set of test vectors
- 3.3 - Building a better coarse selection operator
- 3.4-Sparse approximation of the ideal interpolator
- 4. Benchmark
- 5. Conclusion and Perspectives

Target: Construct an interpolator P containing V_{0} in its range
From the theory, we can define, under SPD assumption of A, an ideal interpolator P_{*} from coarse (\mathcal{C}) and fine (\mathcal{F}) variable selection operators

$$
\begin{equation*}
\underset{\left(n_{\mathcal{C}} \times n\right)}{R}: \Omega \mapsto \mathcal{C} \text { and } \underset{\left(n_{\mathcal{F}} \times n\right)}{S^{H}}: \Omega \mapsto \mathcal{F} \tag{15}
\end{equation*}
$$

such that

$$
\begin{equation*}
n_{\mathcal{C}}+n_{\mathcal{F}}=n \text { and } R S=0 \tag{16}
\end{equation*}
$$

This operator is defined by

$$
\begin{equation*}
P_{*}=\left(I-S\left(S^{H} A S\right)^{-1} S^{H} A\right) R^{H} \tag{17}
\end{equation*}
$$

and minimizes the quantity

$$
\begin{equation*}
\mu_{X}=\min _{P} \max _{e \neq 0} \frac{\langle X(I-P R) e,(I-P R) e\rangle}{\langle A e, e\rangle} \tag{18}
\end{equation*}
$$

where X is a matrix defining the smoothing space.

Target: Construct an interpolator P containing V_{0} in its range
Exemple 1 : Let the coarse and fine selection operators be defined by

$$
R=\left[\begin{array}{ll}
0 & I_{n_{\mathcal{C}}}
\end{array}\right] \text { and } S^{T}=\left[\begin{array}{ll}
I_{n_{\mathcal{F}}} & 0 \tag{19}
\end{array}\right]
$$

After reorganizing A by coarse/fine blocks, such that

$$
A=\left[\begin{array}{cc}
S^{H} A S & S^{H} A R^{H} \\
R A S & R A R^{H}
\end{array}\right]=\left[\begin{array}{ll}
A_{f f} & A_{f c} \\
A_{c f} & A_{c c}
\end{array}\right]
$$

the ideal interpolator can be written

$$
P_{*}=\left[\begin{array}{c}
-A_{f f}^{-1} A_{f c} \tag{20}\\
I_{c c}
\end{array}\right]
$$

and the coarse matrix

$$
\begin{equation*}
A_{\mathcal{C}}=P_{*}^{H} A P_{*}=A_{c c}-A_{c f} A_{f f}^{-1} A_{f c} \tag{21}
\end{equation*}
$$

Here we can prove

$$
\begin{equation*}
E_{*} E_{\mathcal{F}}=\left(I-P_{*}\left(P_{*}^{H} A P_{*}\right)^{-1} P_{*}^{H} A\right)\left(I-S\left(S^{H} A S\right)^{-1} S^{H} A\right)=0 \tag{22}
\end{equation*}
$$

Target: Construct an interpolator P containing V_{0} in its range
Example 2 : Let the coarse and fine selection operators be defined by

$$
\begin{equation*}
R^{H}=V_{0} \text { and } S=V_{+} \tag{23}
\end{equation*}
$$

with V_{0} / V_{+}eigenvectors associated with lowest/highest eigenvalues. It yields

$$
S^{H} A R^{H}=V_{+}^{H}\left[\begin{array}{ll}
V_{0} & V_{+}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{Diag}\left(\lambda_{0}\right) & 0 \\
0 & \operatorname{Diag}\left(\lambda_{+}\right)
\end{array}\right]\left[\begin{array}{l}
V_{0}^{H} \\
V_{+}^{H}
\end{array}\right] V_{0}=0
$$

so the ideal interpolator is defined by

$$
\begin{equation*}
P_{*}=\left(I-S\left(S^{H} A S\right)^{-1} S^{H} A\right) R^{H}=R^{H}=V_{0} \tag{24}
\end{equation*}
$$

and gives the coarse matrix

$$
\begin{equation*}
A_{\mathcal{C}}=\operatorname{Diag}\left(\lambda_{0}\right) \tag{25}
\end{equation*}
$$

Here again

$$
\begin{equation*}
E_{*} E_{\mathcal{F}}=\left(I-P_{*}\left(P_{*}^{H} A P_{*}\right)^{-1} P_{*}^{H} A\right)\left(I-S\left(S^{H} A S\right)^{-1} S^{H} A\right)=0 \tag{26}
\end{equation*}
$$

Target: Construct an interpolator P containing V_{0} in its range
Remark : The ideal framework requires A to be SPD.
\hookrightarrow However the reduction viewpoint is still valid : Removing orthogonal information that the smoother captures will correct the coarse selection operator

Question : Are coarse selection operators in both previous examples good for Helmholtz?

- $R^{H}=\left[\begin{array}{ll}0 & I_{n_{\mathcal{C}}}\end{array}\right]^{T}$ is not relevant for Helmholtz
- $R^{H}=V_{0}$ is not practical (too expensive to compute and we need sparsity)

We can construct a better coarse selection operator R^{H} for Helmholtz.
Idea: Construct fine interpolation rules $R_{\mathcal{F}}$ of R^{H} with a least-squares minimization strategy from smoothed random vectors approximating the near-kernel space V_{0}

First, we generate a set K of κ smoothed random vectors that approximates V_{0}

Figure 10: Eigen decomposition of a random vector (left) vs. smoothed random vector (right)

Cea 3.2 - Generation of a set of test vectors

First, we generate a set K of κ smoothed random vectors that approximates V_{0}

Figure 11: Average eigen decomposition of the total set K

The Least-Squares Minimization strategy consists of constructing each fine interpolation rule r_{i} by minimizing the squared difference between fine values of the near-kernel candidate vectors and the interpolation from their connected coarse variables \mathcal{C}_{i}.

$$
\begin{equation*}
\forall i \in \mathcal{F}, r_{i}=\underset{r}{\arg \min } \sum_{l=1}^{\kappa} w_{l}\left(K_{i, l}-r \cdot K_{\mathcal{C}_{i}, l}\right)^{2}:=\underset{r}{\arg \min } \mathcal{L}_{i}(r) \tag{27}
\end{equation*}
$$

Finding the minimum of the convex loss function \mathcal{L}_{i} is equivalent to solving

$$
\begin{equation*}
\nabla \mathcal{L}_{i}\left(r_{i}\right)=0 \tag{28}
\end{equation*}
$$

Equation (28) can be rewritten element-wise

$$
\begin{equation*}
\frac{\partial \mathcal{L}_{i}\left(r_{i}\right)}{\partial r_{i j}}=\sum_{l=1}^{\kappa} 2 w_{l}\left(K_{i, l}-r_{i} \cdot K_{\mathcal{C}_{i}, l}\right) K_{\mathcal{C}_{i j}, l}=0, \forall j \in\left[1, \operatorname{card}\left(C_{i}\right)\right] \tag{29}
\end{equation*}
$$

Finally, (29) leads to a system of linear equations to solve for each fine variable i

$$
\begin{equation*}
r_{i} K_{\mathcal{C}_{i}} W K_{\mathcal{C}_{i}}^{H}=K_{i} W K_{\mathcal{C}_{i}}^{H} \tag{30}
\end{equation*}
$$

Using the ideal framework and the LSM strategy, let the coarse and fine selection operators

$$
\hat{R}^{H}=\left[\begin{array}{ll}
R_{\mathcal{F}} & I_{\mathcal{C}}
\end{array}\right]^{T}, \hat{S}=\left[\begin{array}{ll}
I_{\mathcal{F}} & -R_{\mathcal{F}}^{H} \tag{31}
\end{array}\right]^{T},
$$

where \hat{R}^{H} is the least squares operator with $R_{\mathcal{F}}$ its fine variable interpolation block. We define $A_{\mathcal{F}}:=\hat{S}^{H} A \hat{S}$. Following the ideal interpolator definition

$$
\begin{equation*}
\hat{P}:=\left(I-\hat{S} A_{\mathcal{F}}^{-1} \hat{S}^{H} A\right) \hat{R}^{H} \tag{32}
\end{equation*}
$$

However, \hat{P} requires the inverse of $A_{\mathcal{F}}$! Instead

$$
\begin{equation*}
\hat{P} \approx \hat{R}^{H}-\hat{S} X_{\mathcal{K}}^{-1} \hat{S}^{H} A \hat{R}^{H} \tag{33}
\end{equation*}
$$

where $X_{\mathcal{K}}^{-1}$ is the best polynomial approximating $A_{\mathcal{F}}^{-1}$ within the Krylov subspace \mathcal{K}. In practice, \hat{P} is approximated column-wise under sparsity constraints

$$
\begin{equation*}
\mathcal{K}_{\mathcal{P}_{i}}^{m}=\left\{Z_{i} b_{i}, Z_{i} A_{\mathcal{F}} Z_{i}^{T} Z_{i} b_{i}, \ldots,\left(Z_{i} A_{\mathcal{F}} Z_{i}^{T}\right)^{m-1} Z_{i} b_{i}\right\} \tag{34}
\end{equation*}
$$

where $b_{i}:=\hat{S}^{H} A \hat{R}_{:, i}^{H}$, and $Z_{i}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{C \operatorname{ard}\left(\mathcal{P}_{i}\right)}$ is the $i^{\text {th }}$ column associated sparsity constraint operator, that restricts any full vector to the non-zero pattern \mathcal{P}_{i}.

- 5-points stencil Cartesian discretization with a.b.c $\left(\partial_{n} u-i k u=0\right.$ on $\left.\partial \Omega\right)$
- 10 points per wavelength $(h=\lambda / 10 \Leftrightarrow k h=2 \pi / 10 \approx 0.625)$
- Multigrid parameters :
- Normal equations polynomial smoother of degree $d=3$
- Number of test vectors tends to grow by a factor of 2 between each level
- Krylov sub-size $m=3$ in the construction of \hat{P}

Figure 12: Number of iterations following the wavenumber k

Cea 4 - Benchmark

Figure 13: Solution x of a Laplace Problem vs. a Helmholtz Problem

Helmholtz is difficult because :

- Negative components appear and require an adapted smoother
- The near-kernel space is oscillatory and needs adapted interpolation rules
\Rightarrow We proposed an algebraic multigrid method that reaches those requirements up to a certain limit.

Further researches will focus on :
(1) Increasing the depth of the multigrid cycle
(2) Sparsity has to be improved
(3) Construct a better coarse selection operator that minimizes $\sum_{i}^{\kappa}\left\|K_{:, i}-R^{H} R K_{:, i}\right\|_{2}$
(4) Work on an adapted framework for Helmholtz

