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1 - Introduction

Principle of multigrid methods :

Smoothing (v iterations)

Clément Richefort

Direct Method
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1-Introduction

Most trivial interpolator :

An — Q
Interpolation from coarse
space to original space is

made by
V\ 1 ... 0]
1
1
Q_ =
Z\ e

coarse level C

o H N =
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m Eigenvalues are both signed =- Problematic for smoothing steps
2

1 - Introduction
-
(Indefinite Helmholtz Problem) < {
The discretization of Q leads to an indefinite system Au = f, involving two major issues
for multigrid methods :

m Oscillatory near kernel space = Hard to make appropriate interpolators

constant number of iterations and independently of k.
Interpolator : Still an open question
Clément Richefort

Target : Find smoothers and interpolators making multigrid methods converging in a
1 Smoother : Normal equations methods or Krylov iterations

[m]

Multigrid methods applied to the Helmholtz equation




1 - Introduction
e

smallest absolute eigenvalues

Figure: Laplace (k = 0 - smooth) / Helmholtz (k # 0 - wave-like) near-kernels

Reminder : Near-kernel space is defined by the set of eigenvectors associated to
Clément Richefort

— These eigenvectors are the most important | A='h = > i
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2 - Approximating the ldeal Interpolator
I —

Let A a n x n matrix where range(A) = R", x and b respectively solution and right hand
side of the system Ax = b.

Ideal interpolator P* is mostly used for theoretical purpose, and permits to give informa-
tion on the convergence scenario following a given C(coarse)/F(fine)-splitting.
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Figure: 5 and 9 points Stencil C/F—Splittings
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2 - Approximating the ldeal Interpolator
I —

Let S and R” both injection interpolators such that

sT R
CUF+—F,CUF—C
In the literature, the Ideal Interpolator is defined the following way
P*=(1—-S(STAS)'START

Let reorganize A such that

_|Ar  Ax | x +_|o
A_{Ad Acc] ,andS_[O} R _M
—A Ar

cc

Thus P* = [ } and Ac = P*TAP* = Ac — AsA; A # RART = Ac
D ———

Schur Complements formula

P* removes the whole fine related information from the coarse space
representation !
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2 - Approximating the ldeal Interpolator

Problem : P* contains an exact inversion, which is too expensive. Plus, if Ac is dense,
it will limit our capacity to coarsen deeper

But it is still possible to approximate (ST AS)™! by (STAS)™ |
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Figure: Approximation of (ST AS)~* using Schur complements

Then we define approximation of Ideal Interpolator as

P=(1-S(S"TAS)~'STA)RT

F —Relaxation
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2 - Approximating the ldeal Interpolator
-
Let £ = (STAS)™! — (STAS)™ = A;' — A¥'. Thus it follows that
p— [—A;IA;C + SAfc] _ . [
space?

gAfc
~—~ 0
Ideal Interpolator
Noise
Goal : Find a good trade-off between sparsity and noise reduction !

How to remove the noise which degrades the coarse representation of the near-kernel
Idea : Adding a correction matrix to the ideal approximation formula !

P=(—-X"1A)(I-S(STAS)™START
Clément Richefort
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Remark : We need to keep in mind that P should be the sparsest possible, and also that
M should not damage the near-kernel space while removing the noise. (X' = wD™")
Multigrid methods applied to the Helmholtz equation




3 -

Tentative interpolator built from local NKC

The following idea is inspired by the Smoothed Aggregation method.

Here is its principle :

1

2
3
4

Let a system Ax = b with a known solution (for instance Ax = 0).
Approximate x by X with few smoothing iterations, then compute e = x — X.
Construct a Tentative interpolator T such that e = Te. < T e = e..

Then compute P = MT with M some error propagation matrix.

= P targets remaining information e that smoother is not able to capture.
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3 - Tentative interpolator built from local NKC
I —

The previous operator : P = (I — X7*A)(I — S(STAS)~'STA)RT with

1 1
o m ° n
=R" |1| &R =1
0 0
1 ! 1 1
~~
0 e 0

e

Would a 7 satisfying some e = Te. < T e = e. better than R7?
What if e contains near-kernel information?
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How to construct T ?

3 - Tentative interpolator built from local NKC

lowest component vo(A;).

®m 1. From a given C/F splitting, divide Q in A; agglomerates and compute its

<
A)
Very Sparse

A;
7
L, |
~
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3 - Tentative interpolator built from local NKC
I —

How to construct T ?

m 2. For each agglomerate A;, compute the Householder Matrix Q; such that

Q wo(A) = ||vo(.,4,-),-||2ufc) with ufc) canonical vector of axis (C). Since
Q" vo(A;) is null on each (F) elements, keep only column (C) of Q.
ur
~ e
QT = (I-2 VO(A:')VO(A/)T)
' [Ivo(A7)II3
v
o B Q?E’i r H and
w (C)
Q7 vo(Ai) = [lvo(A)l2u;
Q! <=

VO(A[) = Qill VO(-AI')HQUI(C)

Figure: Householder reflection
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3 - Tentative interpolator built from local NKC
I —

B 3. Repeat the process for each A;, and build the block column matrix T

eo (©)

e = Q&C)

]

——

e Qgc)
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3 - Tentative interpolator built from local NKC
I —

To summarize the construction of T :

Algorithm 1 Tentative Prolongator with local lowest components

1: C/F « ComputeCFSplitting(A)

2: A + ComputeAgglomerates(A,C, F)

3: for i < card(C) do :

4 vo(A;) < ComputeLowestEigenVector(.A;)
5: Q@ + ComputeHouseholderReflector(vg(A;))
6

7

8

T < Insert AsNewColumn(Q);)
end for
Return 7

P=(I—wD'A)(I—-S(STAS)'STAT
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4 - Benchmarks
———
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Figure: Ideal vs. Smoothed Ideal Block Approximation - 5P Stencil
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4 - Benchmarks
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Figure: Ideal vs. Smoothed Ideal Block Approximation - 9P Stencil
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5 - To do next

1 Use Conjugate Gradient on Normal Equations (CGNR) instead of
w-Jacobi as smoothing matrix

2 Add constraint in CGNR sub-research space to keep interesting

properties in coarse matrices in order to coarsen deeper. (structure,
clean near-kernel space, etc.)
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