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1 - Introduction

Principle of multigrid methods :

Figure: Illustration of 3 levels V-cycle multigrid method
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1-Introduction

Most trivial interpolator :
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1 - Introduction

(Indefinite Helmholtz Problem) ⇔
{

−∆u − k2u = f on Ω
∂nj u = iku on ∂Ω

The discretization of Ω leads to an indefinite system Au = f , involving two major issues
for multigrid methods :

Eigenvalues are both signed ⇒ Problematic for smoothing steps
Oscillatory near kernel space ⇒ Hard to make appropriate interpolators

Target : Find smoothers and interpolators making multigrid methods converging in a
constant number of iterations and independently of k.

1 Smoother : Normal equations methods or Krylov iterations
2 Interpolator : Still an open question ...
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1 - Introduction

Figure: Laplace (k = 0 - smooth) / Helmholtz (k 6= 0 - wave-like) near-kernels

Reminder : Near-kernel space is defined by the set of eigenvectors associated to
smallest absolute eigenvalues
→ These eigenvectors are the most important ! A−1b =

∑
i
αi
λi

vi
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2 - Approximating the Ideal Interpolator

Let A a n × n matrix where range(A) = Rn, x and b respectively solution and right hand
side of the system Ax = b.

Ideal interpolator P∗ is mostly used for theoretical purpose, and permits to give informa-
tion on the convergence scenario following a given C(coarse)/F(fine)-splitting.

Figure: 5 and 9 points Stencil C/F−Splittings
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2 - Approximating the Ideal Interpolator

Let S and RT both injection interpolators such that

C ∪ F ST
7−−→ F , C ∪ F R7−→ C

In the literature, the Ideal Interpolator is defined the following way

P∗ = (I − S(ST AS)−1ST A)RT

Let reorganize A such that

A =

[
Aff Afc
Acf Acc

]
, and S =

[
Iff
0

]
, RT =

[
0
Icc

]

Thus P∗ =

[
−A−1

ff Afc
Icc

]
and Ac = P∗T AP∗ = Acc − Acf A−1

ff Afc︸ ︷︷ ︸
Schur Complements formula

6= RART = Acc

P∗ removes the whole fine related information from the coarse space
representation !
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2 - Approximating the Ideal Interpolator

Problem : P∗ contains an exact inversion, which is too expensive. Plus, if Ac is dense,
it will limit our capacity to coarsen deeper

But it is still possible to approximate (ST AS)−1 by (ST AS)∼1 !

Figure: Approximation of (ST AS)−1 using Schur complements
Then we define approximation of Ideal Interpolator as

P = (I − S(ST AS)∼1ST A)︸ ︷︷ ︸
F−Relaxation

RT
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2 - Approximating the Ideal Interpolator

Let E = (ST AS)−1 − (ST AS)∼1 = A−1
ff − A∼1

ff . Thus it follows that

P =

[
−A−1

ff Afc + EAfc
Icc

]
= P∗︸︷︷︸

Ideal Interpolator

+

[
EAfc

0

]
︸ ︷︷ ︸

Noise

Goal : Find a good trade-off between sparsity and noise reduction !

How to remove the noise which degrades the coarse representation of the near-kernel
space?

Idea : Adding a correction matrix to the ideal approximation formula !

P = (I − X−1A)(I − S(ST AS)∼1ST A)RT

Remark : We need to keep in mind that P should be the sparsest possible, and also that
M should not damage the near-kernel space while removing the noise. (X−1 = wD−1)
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3 - Tentative interpolator built from local NKC

The following idea is inspired by the Smoothed Aggregation method.

Here is its principle :
1 Let a system Ax = b with a known solution (for instance Ax = 0).
2 Approximate x by x̃ with few smoothing iterations, then compute e = x − x̃ .
3 Construct a Tentative interpolator T such that e = T ec ⇔ T T e = ec .
4 Then compute P = MT with M some error propagation matrix.

⇒ P targets remaining information e that smoother is not able to capture.
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3 - Tentative interpolator built from local NKC

The previous operator : P = (I − X−1A)(I − S(ST AS)∼1ST A)RT with


1
0
1
0
1
0


︸︷︷︸

e

= RT

1
1
1


︸︷︷︸

ec

⇔ R


1
0
1
0
1
0

 =

1
1
1



Would a T satisfying some e = T ec ⇔ T T e = ec better than RT ?
What if e contains near-kernel information?
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3 - Tentative interpolator built from local NKC

How to construct T ?

1. From a given C/F splitting, divide Ω in Ai agglomerates and compute its
lowest component v0(Ai).
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3 - Tentative interpolator built from local NKC

How to construct T ?

2. For each agglomerate Ai , compute the Householder Matrix Qi such that
QT

i v0(Ai) = ‖v0(Ai)i‖2u(C)
i with u(C)

i canonical vector of axis (C). Since
QT

i v0(Ai) is null on each (F) elements, keep only column (C) of Qi .

Figure: Householder reflection

QT
i = (I − 2v0(Ai)v0(Ai)

T

‖v0(Ai)‖2
2

)

and

QT
i v0(Ai) = ‖v0(Ai)‖2u(C)

i
⇔

v0(Ai) = Qi‖v0(Ai)‖2u(C)
i
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3 - Tentative interpolator built from local NKC

3. Repeat the process for each Ai , and build the block column matrix T
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3 - Tentative interpolator built from local NKC

To summarize the construction of T :

P = (I − wD−1A)(I − S(ST AS)∼1ST A)T
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4 - Benchmarks

Figure: Ideal vs. Smoothed Ideal Block Approximation - 5P Stencil
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4 - Benchmarks

Figure: Ideal vs. Smoothed Ideal Block Approximation - 9P Stencil
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5 - To do next

1 Use Conjugate Gradient on Normal Equations (CGNR) instead of
w-Jacobi as smoothing matrix

2 Add constraint in CGNR sub-research space to keep interesting
properties in coarse matrices in order to coarsen deeper. (structure,
clean near-kernel space, etc.)
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