Multigrid methods applied to the Helmholtz equation

Clément Richefort

May 5, 2022

Table of contents

1 Introduction
2 Approximating the Ideal Interpolator
3 Tentative Interpolator built from local near-kernel spaces
4 Benchmarks

1 - Introduction

Principle of multigrid methods :

Figure: Illustration of 3 levels V-cycle multigrid method

1-Introduction

Most trivial interpolator :

$$
A_{h}-\Omega
$$

Interpolation from coarse space to original space is made by

$$
P_{c}^{\Omega}=\frac{1}{2}\left[\begin{array}{ccc}
1 & \ldots & 0 \\
2 & & \vdots \\
1 & 1 & \\
0 & 2 & \ddots \\
\vdots & 1 & \ddots \\
0 & \ldots & \ddots
\end{array}\right]
$$

1 - Introduction

$$
\text { (Indefinite Helmholtz Problem) } \Leftrightarrow\left\{\begin{array}{c}
-\Delta u-k^{2} u=f \text { on } \Omega \\
\partial_{n_{j}} u=i k u \text { on } \partial \Omega
\end{array}\right.
$$

The discretization of Ω leads to an indefinite system $A u=f$, involving two major issues for multigrid methods :

- Eigenvalues are both signed \Rightarrow Problematic for smoothing steps

■ Oscillatory near kernel space \Rightarrow Hard to make appropriate interpolators
Target: Find smoothers and interpolators making multigrid methods converging in a constant number of iterations and independently of k.

1 Smoother: Normal equations methods or Krylov iterations
2 Interpolator: Still an open question ...

1 - Introduction

Figure: Laplace ($k=0$ - smooth) / Helmholtz ($k \neq 0$ - wave-like) near-kernels
Reminder: Near-kernel space is defined by the set of eigenvectors associated to smallest absolute eigenvalues
\rightarrow These eigenvectors are the most important! $A^{-1} b=\sum_{i} \frac{\alpha_{i}}{\lambda_{i}} v_{i}$

2 - Approximating the Ideal Interpolator

Let A a $n \times n$ matrix where $\operatorname{range}(A)=\mathbb{R}^{n}, x$ and b respectively solution and right hand side of the system $A x=b$.

Ideal interpolator P^{*} is mostly used for theoretical purpose, and permits to give information on the convergence scenario following a given \mathcal{C} (coarse) $/ \mathcal{F}($ fine $)$-splitting.

Figure: 5 and 9 points Stencil $\mathcal{C} / \mathcal{F}$-Splittings

2 - Approximating the Ideal Interpolator

Let S and R^{T} both injection interpolators such that

$$
\mathcal{C} \cup \mathcal{F} \stackrel{S^{T}}{\longrightarrow} \mathcal{F}, \mathcal{C} \cup \mathcal{F} \stackrel{R}{\longrightarrow} \mathcal{C}
$$

In the literature, the Ideal Interpolator is defined the following way

$$
P^{*}=\left(I-S\left(S^{T} A S\right)^{-1} S^{T} A\right) R^{T}
$$

Let reorganize A such that

$$
A=\left[\begin{array}{ll}
A_{f f} & A_{f c} \\
A_{c f} & A_{c c}
\end{array}\right] \text {, and } S=\left[\begin{array}{c}
I_{f f} \\
0
\end{array}\right], R^{T}=\left[\begin{array}{c}
0 \\
I_{c c}
\end{array}\right]
$$

Thus $P^{*}=\left[\begin{array}{c}-A_{f f}^{-1} A_{f c} \\ I_{c c}\end{array}\right]$ and $A_{c}=P^{* T} A P^{*}=\underbrace{A_{c c}-A_{c c} A_{f f}^{-1} A_{f c}}_{\text {Schur Complements formula }} \neq R A R^{T}=A_{c c}$
P^{*} removes the whole fine related information from the coarse space representation!

2 - Approximating the Ideal Interpolator

Problem : P^{*} contains an exact inversion, which is too expensive. Plus, if A_{c} is dense, it will limit our capacity to coarsen deeper

But it is still possible to approximate $\left(S^{T} A S\right)^{-1}$ by $\left(S^{T} A S\right)^{\sim 1}$!

Figure: Approximation of $\left(S^{T} A S\right)^{-1}$ using Schur complements
Then we define approximation of Ideal Interpolator as

$$
P=\underbrace{\left(I-S\left(S^{T} A S\right)^{\sim 1} S^{T} A\right)}_{\mathcal{F}-\text { Relaxation }} R^{T}
$$

2 - Approximating the Ideal Interpolator

Let $\mathcal{E}=\left(S^{T} A S\right)^{-1}-\left(S^{T} A S\right)^{\sim 1}=A_{f f}^{-1}-A_{f f}^{\sim 1}$. Thus it follows that

$$
P=\left[\begin{array}{c}
-A_{f f}^{-1} A_{f c}+\mathcal{E} A_{f c} \\
I_{c c}
\end{array}\right]=\underbrace{P^{*}}_{\text {Ideal Interpolator }}+\underbrace{\left[\begin{array}{c}
\mathcal{E} A_{f c} \\
0
\end{array}\right]}_{\text {Noise }}
$$

Goal: Find a good trade-off between sparsity and noise reduction!
How to remove the noise which degrades the coarse representation of the near-kernel space?

Idea : Adding a correction matrix to the ideal approximation formula!

$$
P=\left(I-X^{-1} A\right)\left(I-S\left(S^{T} A S\right)^{\sim 1} S^{T} A\right) R^{T}
$$

Remark: We need to keep in mind that P should be the sparsest possible, and also that M should not damage the near-kernel space while removing the noise. $\left(X^{-1}=w D^{-1}\right)$

3 - Tentative interpolator built from local NKC

The following idea is inspired by the Smoothed Aggregation method.
Here is its principle :
1 Let a system $A x=b$ with a known solution (for instance $A x=0$).
2 Approximate x by \tilde{x} with few smoothing iterations, then compute $e=x-\tilde{x}$.
3 Construct a Tentative interpolator \mathcal{T} such that $e=\mathcal{T} e_{c} \Leftrightarrow \mathcal{T}^{T} e=e_{c}$.
4 Then compute $P=M \mathcal{T}$ with M some error propagation matrix.
$\Rightarrow P$ targets remaining information e that smoother is not able to capture.

3 - Tentative interpolator built from local NKC

The previous operator : $P=\left(I-X^{-1} A\right)\left(I-S\left(S^{T} A S\right)^{\sim 1} S^{T} A\right) R^{T}$ with

$$
\underbrace{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]}_{e}=R^{T} \underbrace{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}_{e_{c}} \Leftrightarrow R\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Would a \mathcal{T} satisfying some $e=\mathcal{T} e_{c} \Leftrightarrow \mathcal{T}^{\top} e=e_{c}$ better than R^{T} ?
What if e contains near-kernel information?

3 - Tentative interpolator built from local NKC

How to construct \mathcal{T} ?
■ 1. From a given $\mathcal{C} / \mathcal{F}$ splitting, divide Ω in \mathcal{A}_{i} agglomerates and compute its lowest component $v_{0}\left(\mathcal{A}_{i}\right)$.

3 - Tentative interpolator built from local NKC

How to construct \mathcal{T} ?

- 2. For each agglomerate \mathcal{A}_{i}, compute the Householder Matrix Q_{i} such that $Q_{i}^{T} v_{0}\left(\mathcal{A}_{i}\right)=\left\|v_{0}\left(\mathcal{A}_{i}\right)_{i}\right\|_{2} u_{i}^{(\mathcal{C})}$ with $u_{i}^{(\mathcal{C})}$ canonical vector of axis (\mathcal{C}). Since $Q_{i}^{T} v_{0}\left(\mathcal{A}_{i}\right)$ is null on each (\mathcal{F}) elements, keep only column (\mathcal{C}) of Q_{i}.

$$
\begin{gathered}
Q_{i}^{T}=\left(I-2 \frac{v_{0}\left(\mathcal{A}_{i}\right) v_{0}\left(\mathcal{A}_{i}\right)^{T}}{\left\|v_{0}\left(\mathcal{A}_{i}\right)\right\|_{2}^{2}}\right) \\
\text { and } \\
Q_{i}^{T} v_{0}\left(\mathcal{A}_{i}\right)=\left\|v_{0}\left(\mathcal{A}_{i}\right)\right\|_{2} u_{i}^{(\mathcal{C})} \\
\stackrel{\Leftrightarrow}{v_{0}\left(\mathcal{A}_{i}\right)=Q_{i}\left\|v_{0}\left(\mathcal{A}_{i}\right)\right\|_{2} u_{i}^{(\mathcal{C})}}
\end{gathered}
$$

Figure: Householder reflection

3 - Tentative interpolator built from local NKC

■ 3. Repeat the process for each \mathcal{A}_{i}, and build the block column matrix \mathcal{T}

3 - Tentative interpolator built from local NKC

To summarize the construction of \mathcal{T} :

```
Algorithm 1 Tentative Prolongator with local lowest components
    : \(\mathcal{C} / \mathcal{F} \leftarrow\) ComputeCFSplitting \((A)\)
    2: \(\mathcal{A} \leftarrow\) ComputeAgglomerates \((A, \mathcal{C}, \mathcal{F})\)
    3: for \(i \leq \operatorname{card}(\mathcal{C})\) do :
    4: \(\quad v_{0}\left(\mathcal{A}_{i}\right) \leftarrow\) ComputeLowestEigenVector \(\left(\mathcal{A}_{i}\right)\)
    5: \(\quad Q_{i} \leftarrow\) ComputeHouseholderReflector \(\left(v_{0}\left(\mathcal{A}_{i}\right)\right)\)
    6: \(\quad \mathcal{T} \leftarrow\) InsertAsNewColumn \(\left(Q_{i}\right)\)
    7: end for
    8: Return \(\mathcal{T}\)
```

$$
P=\left(I-w D^{-1} A\right)\left(I-S\left(S^{T} A S\right)^{\sim 1} S^{T} A\right) \mathcal{T}
$$

4 - Benchmarks

Figure: Ideal vs. Smoothed Ideal Block Approximation - 5P Stencil

4 - Benchmarks

Figure: Ideal vs. Smoothed Ideal Block Approximation - 9P Stencil

5 - To do next

1 Use Conjugate Gradient on Normal Equations (CGNR) instead of w-Jacobi as smoothing matrix

2 Add constraint in CGNR sub-research space to keep interesting properties in coarse matrices in order to coarsen deeper. (structure, clean near-kernel space, etc.)

