Multigrid methods applied to the Helmholtz equation

Clément Richefort

May 5, 2022

Clément Richefort

Multigrid methods applied to the Helmholtz equation

《曰》 《國》 《臣》 《臣》

Table of contents

- 1 Introduction
- 2 Approximating the Ideal Interpolator
- 3 Tentative Interpolator built from local near-kernel spaces
- 4 Benchmarks

< A > <

4 E b

- Þ-

1 - Introduction

Principle of multigrid methods :

Figure: Illustration of 3 levels V-cycle multigrid method

イロト イポト イヨト イヨト

E

1-Introduction

Most trivial interpolator :

 $A_h - \Omega$

Interpolation from coarse space to original space is made by

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

E

 $(\text{Indefinite Helmholtz Problem}) \quad \Leftrightarrow \quad \left\{ \begin{array}{l} -\Delta u \ -k^2 u = f \ \text{on } \Omega \\ \partial_{n_j} u = iku \ \text{on } \partial\Omega \end{array} \right.$

The discretization of Ω leads to an indefinite system Au = f, involving two major issues for multigrid methods :

- Eigenvalues are both signed ⇒ Problematic for smoothing steps
- Oscillatory near kernel space \Rightarrow Hard to make appropriate interpolators

<u>Target</u> : Find smoothers and interpolators making multigrid methods converging in a constant number of iterations and independently of k.

- 1 Smoother : Normal equations methods or Krylov iterations
- 2 Interpolator : Still an open question ...

() < </p>

1 - Introduction

Figure: Laplace (k = 0 - *smooth*) / Helmholtz ($k \neq 0$ - *wave-like*) near-kernels

<u>Reminder</u> : Near-kernel space is defined by the set of eigenvectors associated to smallest absolute eigenvalues

 \rightarrow These eigenvectors are the most important ! $A^{-1}b = \sum_{i} \frac{\alpha_i}{\lambda_i} v_i$

4 D b 4 A b 4 B b

2 - Approximating the Ideal Interpolator

Let A a $n \times n$ matrix where range $(A) = \mathbb{R}^n$, x and b respectively solution and right hand side of the system Ax = b.

Ideal interpolator P^* is mostly used for theoretical purpose, and permits to give information on the convergence scenario following a given $C(coarse)/\mathcal{F}(fine)$ -splitting.

Figure: 5 and 9 points Stencil C/F-Splittings

Let S and R^{T} both injection interpolators such that

$$\mathcal{C} \cup \mathcal{F} \xrightarrow{S^{\mathsf{T}}} \mathcal{F} \ , \ \mathcal{C} \cup \mathcal{F} \xrightarrow{\mathsf{R}} \mathcal{C}$$

In the literature, the Ideal Interpolator is defined the following way

$$P^* = (I - S(S^T A S)^{-1} S^T A) R^T$$

Let reorganize A such that

$$A = \begin{bmatrix} A_{ff} & A_{fc} \\ A_{cf} & A_{cc} \end{bmatrix}, \text{ and } S = \begin{bmatrix} I_{ff} \\ 0 \end{bmatrix}, R^{T} = \begin{bmatrix} 0 \\ I_{cc} \end{bmatrix}$$

Thus $P^* = \begin{bmatrix} -A_{ff}^{-1}A_{fc} \\ I_{cc} \end{bmatrix}$ and $A_c = P^{*T}AP^* = \underbrace{A_{cc} - A_{cf}A_{ff}^{-1}A_{fc}}_{\text{Schur Complements formula}} \neq RAR^{T} = A_{cc}$

 P^* removes the whole fine related information from the coarse space representation !

2 - Approximating the Ideal Interpolator

<u>Problem</u>: P^* contains an exact inversion, which is too expensive. Plus, if A_c is dense, it will limit our capacity to coarsen deeper

But it is still possible to approximate $(S^T A S)^{-1}$ by $(S^T A S)^{\sim 1}$!

Figure: Approximation of $(S^T A S)^{-1}$ using Schur complements Then we define approximation of Ideal Interpolator as

$$P = \underbrace{(I - S(S^{T}AS)^{\sim 1}S^{T}A)}_{\mathcal{F}-\text{Relaxation}}R^{T}$$

2 - Approximating the Ideal Interpolator

Let
$$\mathcal{E} = (S^T A S)^{-1} - (S^T A S)^{\sim 1} = A_{ff}^{-1} - A_{ff}^{\sim 1}$$
. Thus it follows that

Goal : Find a good trade-off between sparsity and noise reduction !

How to remove the noise which degrades the coarse representation of the near-kernel space?

Idea : Adding a correction matrix to the ideal approximation formula !

$$P = (I - X^{-1}A)(I - S(S^{T}AS)^{\sim 1}S^{T}A)R^{T}$$

<u>Remark</u>: We need to keep in mind that P should be the sparsest possible, and also that M should not damage the near-kernel space while removing the noise. $(X^{-1} = wD^{-1})$

《曰》 《國》 《臣》 《臣》

The following idea is inspired by the Smoothed Aggregation method.

Here is its principle :

- **1** Let a system Ax = b with a known solution (for instance Ax = 0).
- **2** Approximate x by \tilde{x} with few smoothing iterations, then compute $e = x \tilde{x}$.
- **3** Construct a *Tentative interpolator* \mathcal{T} such that $e = \mathcal{T}e_c \Leftrightarrow \mathcal{T}^T e = e_c$.
- 4 Then compute P = MT with M some error propagation matrix.
- \Rightarrow *P* targets remaining information *e* that smoother is not able to capture.

<u>The previous operator</u>: $P = (I - X^{-1}A)(I - S(S^TAS)^{\sim 1}S^TA)R^T$ with

$$\begin{bmatrix} 1\\0\\1\\0\\1\\0\\\\e \end{bmatrix} = R^{T} \begin{bmatrix} 1\\1\\1\\\\e_{c} \end{bmatrix} \Leftrightarrow R \begin{bmatrix} 1\\0\\1\\0\\1\\0\\\end{bmatrix} = \begin{bmatrix} 1\\1\\1\\\end{bmatrix}$$

Would a \mathcal{T} satisfying some $e = \mathcal{T}e_c \Leftrightarrow \mathcal{T}^T e = e_c$ better than R^T ? What if e contains near-kernel information?

How to construct T?

I. From a given C/F splitting, divide Ω in A_i agglomerates and compute its lowest component v₀(A_i).

4 D b 4 A b 4 B b

프 > 프

How to construct T?

■ 2. For each agglomerate \mathcal{A}_i , compute the Householder Matrix Q_i such that $Q_i^T v_0(\mathcal{A}_i) = \|v_0(\mathcal{A}_i)_i\|_2 u_i^{(\mathcal{C})}$ with $u_i^{(\mathcal{C})}$ canonical vector of axis (\mathcal{C}). Since $Q_i^T v_0(\mathcal{A}_i)$ is null on each (\mathcal{F}) elements, keep only column (\mathcal{C}) of Q_i .

Figure: Householder reflection

 $Q_i^T = (I - 2 \frac{v_0(\mathcal{A}_i)v_0(\mathcal{A}_i)^T}{\|v_0(\mathcal{A}_i)\|_2^2})$ and $Q_i^T v_0(\mathcal{A}_i) = \|v_0(\mathcal{A}_i)\|_2 u_i^{(\mathcal{C})}$ $\Leftrightarrow v_0(\mathcal{A}_i) = Q_i \|v_0(\mathcal{A}_i)\|_2 u_i^{(\mathcal{C})}$

3. Repeat the process for each \mathcal{A}_i , and build the block column matrix \mathcal{T}

To summarize the construction of \mathcal{T} :

 Algorithm 1 Tentative Prolongator with local lowest components

 1: $\mathcal{C}/\mathcal{F} \leftarrow \text{ComputeCFSplitting}(A)$

 2: $\mathcal{A} \leftarrow \text{ComputeAgglomerates}(A, \mathcal{C}, \mathcal{F})$

 3: for $i \leq \text{card}(\mathcal{C})$ do :

 4: $v_0(\mathcal{A}_i) \leftarrow \text{ComputeLowestEigenVector}(\mathcal{A}_i)$

 5: $Q_i \leftarrow \text{ComputeHouseholderReflector}(v_0(\mathcal{A}_i))$

 6: $\mathcal{T} \leftarrow \text{InsertAsNewColumn}(Q_i)$

 7: end for

8: Return \mathcal{T}

$$P = (I - wD^{-1}A)(I - S(S^{T}AS)^{\sim 1}S^{T}A)\mathcal{T}$$

4 - Benchmarks

Figure: Ideal vs. Smoothed Ideal Block Approximation - 5P Stencil

(日) (문) (문) (문)

4 - Benchmarks

Figure: Ideal vs. Smoothed Ideal Block Approximation - 9P Stencil

(日) (四) (三) (三) (三)

- Use Conjugate Gradient on Normal Equations (CGNR) instead of w-Jacobi as smoothing matrix
- 2 Add constraint in CGNR sub-research space to keep interesting properties in coarse matrices in order to coarsen deeper. (structure, clean near-kernel space, etc.)