PaStiX: Distributed Interface

Supervisors: Pierre Ramet and Mathieu Faverge

Alycia Lisito
Summary

01. PaStiX
02. Degree of Freedom
03. From CSC to Block CSC
04. MPI implementation
05. Conclusion
PaStiX
What is PaStiX?

PaStiX = Parallel Sparse Linear Algebra Solver

- Linear Algebra Solver
 - Solves $Ax = b$
- Sparse
 - Matrix with a lot of zero elements
- Parallel
 - Several schedulers:
 - Sequential
 - Static
 - Dynamic
 - StarPU
 - Parsec
 - MPI
How does PaStiX work?

4 steps

• Analyse
 > Ordering: Scotch, Metis
 – Computes the permutation P
 > Symbolic Factorisation
 – Computes the graph of A
 > Blend
 – Computes the blocks Partition of A

• Numerical Factorisation
 > Computes PAP^T
 > Stores PAP^T in blocks

• Solve
 > Solves $PAP^TPx = Pb$

• Refinement
 > Refines the solution x
The Analyse step

Analyse

- Computes the permutation P
- Computes the graph of A
- Computes the blocks Partition of A

Figure: Example of the analyse step for a matrix A
The Factorisation step

Factorisation

- Computes the permutation PAP^T
- Stores PAP^T in the blocks

Figure: Example of the factorisation step for a matrix A: the graphs
Factorisation

- Computes the permutation PAP^T
- Stores PAP^T in the blocks

Figure: Example of the factorisation step for a matrix A: permutation
The Factorisation step

Factorisation

- Computes the permutation PAP^T
- Stores PAP^T in the blocks

Figure: Example of the factorisation step for a matrix A
Degree of Freedom
Single Degree of Freedom

Single DoF: temperature

Figure: Graph of a matrix A with Single DoF
Multiple Constant DoF: temperature and pressure

Figure: Graph of a matrix A with Multiple Constant DoF
Multiple Variadic Degree of Freedom

Multiple Variadic DoF: temperature, pressure and volume

Figure: Graph of a matrix A with Multiple Variadic DoF
From CSC to Block CSC
CSC format

Figure: A in CSC format
BCSC format

Figure: PAP^T in BCSC format
From A_{CSC} to PAP^T_{BCSC}

Shared memory implementation

Figure: CSC to BCSC in shared memory
MPI implementation
Matrix distributed

Matrix distributed in memory

Figure: Matrix Partition in distributed memory
Block distributed in memory

Figure: Block Partition in distributed memory
Distributed memory implementation

Figure: CSC to BCSC in distributed memory: processor 0
Distributed memory implementation

Figure: CSC to BCSC in distributed memory: processor 1
Exchanging the data

Data buffers

- Sending indexes: \(n_{\text{br}}_{\text{proc}} - 1 \)
- Sending values: \(n_{\text{br}}_{\text{proc}} - 1 \)
- Receiving indexes: 1
- Receiving values: 1

Count the data

- If \(\text{DoF} \) equals to 1: 1 value per 2 indexes.
- If \(\text{DoF constant} \) equal to \(d \): \(d \) per 2 indexes.
- If \(\text{DoF variadic} \): number of values per 2 indexes depends on the \(\text{DoF} \) of the indexes.
Conclusion
Next steps

- Reduce the amount of data exchanged
- Distributed Solve and Refinement:
 - Exchange the data for the vector
 - TRSM part of the solve
- Variadic degree of freedom