

PaStiX: Distributed Interface

Supervisors: Mathieu Faverge and Pierre Ramet

Alycia Lisito

Summary

- 01. PaStiX
- 02.. Matrix permutation
- 03. Vector permutation
- 04. Performances
- 05. Conclusion

PaStiX

PaStiX = Parallel Sparse Linear Algebra Solver

- Linear Algebra Solver
 - > Solves Ax = b
- Sparse
 - > Matrix with a lot of zero elements
- Parallel
 - > Several schedulers:
 - Sequential
 - Static
 - Dynamic
 - StarPU
 - Parsec
 - > MPI

4 steps

- Analyse
 - > Permutation P
 - > Blocks
- Numerical Factorisation
 - \rightarrow A \rightarrow PAP^T \rightarrow LU
- Solve
 - > b \rightarrow Pb
 - > Solves Ly = Pb
 - > Solves UPx = y
 - $> Px \rightarrow x$
- Refinement
 - > Refines the solution x

The matrix format: CSC format

Figure: Example of a matrix A in the CSC format (A_{CSC})

The CSC format in distributed memory

Figure: Example of a **distributed** matrix A in the CSC format (A_{CSC})

The block format: BCSC format

Figure: Example of a matrix PAP^T in the BCSC format (PAP_{BCSC}^T)

Degree of Freedom: Single

Figure: Example of a matrix A with a Single DoF

Degree of Freedom: Multiple constant

Figure: Example of a matrix A with a Multiple Constant DoF

Degree of Freedom: Multiple variadic

Figure: Example of a matrix A with a Multiple Variadic DoF

Goal of my work

Figure: The different types of indexes

Matrix permutation

Matrix permutation: $A \rightarrow PAP^T$

Figure: Goal of the permutation and block storage

From A_{CSC} to PAP_{BCSC}^T

Figure: Data exchanged between the processor in the distributed memory case

From A_{CSC} to PAP_{BCSC}^T

Processors communications: the difficulties

- How much data will I send?
- How much data will I receive ?
- Where can I store the buffers?

Figure: Structure to handle the processors communications

How are the different indexes handled?

Figure: Algorithm in terms of indexes conversion

Vector permutation

Permutation of the vector: the replicated case

Figure: Data exchanged in the replicated case

Permutation of the vector: the distributed case

Figure: Data exchanged in the distributed case

Performances

Performances of the matrix permutation

Figure: Acceleration of the matrix permutation on 2, 4, and 8 nodes for different matrices

Conclusion

Conclusion

Goals achieved

- Matrix permutation in distributed memory
- Matrix permutation with multiple constant DoF
- Vector permutation in replicated to distributed case
- Vector permutation in distributed to distributed case
- Distributed sequential solve

Next steps

- Improve the MPI communications
- Implement the distributed multi-threaded solve
- Implement the matrix permutation with variadic DoF
- Implement the vector permutation with variadic DoF

