PaStiX:
Distributed Interface

Supervisors: Mathieu Faverge and Pierre Ramet

Alycia Lisito
Summary

01. PaStiX
02. Matrix permutation
03. Vector permutation
04. Performances
05. Conclusion
What is PaStiX?

PaStiX = Parallel Sparse Linear Algebra Solver

- Linear Algebra Solver
 - Solves $Ax = b$
- Sparse
 - Matrix with a lot of zero elements
- Parallel
 - Several schedulers:
 - Sequential
 - Static
 - Dynamic
 - StarPU
 - Parsec
 - MPI
How does PaStiX work?

4 steps

- Analyse
 - Permutation P
 - Blocks
- Numerical Factorisation
 - $A \rightarrow PAP^T \rightarrow LU$
- Solve
 - $b \rightarrow Pb$
 - Solves $Ly = Pb$
 - Solves $UPx = y$
 - $Px \rightarrow x$
- Refinement
 - Refines the solution x
The matrix format: **CSC** format

Figure: Example of a matrix A in the **CSC** format (A_{CSC})
The **CSC format** in distributed memory

Figure: Example of a **distributed** matrix A in the **CSC format** (A_{CSC})
The block format: \textit{BCSC} format

\textbf{Figure:} Example of a matrix PAP^T in the \textit{BCSC} format (PAP^T_{BCSC})
Degree of Freedom: Single

Figure: Example of a matrix A with a Single DoF
Degree of Freedom: Multiple constant

Figure: Example of a matrix A with a Multiple Constant DoF
Degree of Freedom: Multiple variadic

Figure: Example of a matrix A with a Multiple Variadic DoF
Goal of my work

Figure: The different types of indexes
Matrix permutation
Matrix permutation: $A \rightarrow PAP^T$

Figure: Goal of the permutation and block storage
Figure: Data exchanged between the processor in the distributed memory case
Processors communications: the difficulties

- How much data will I send?
- How much data will I receive?
- Where can I store the buffers?

Figure: Structure to handle the processors communications
From A_{CSC} to PAP_{BCSC}^T

How are the different indexes handled?

Figure: Algorithm in terms of indexes conversion
Vector permutation
Permutation of the vector: the replicated case

Figure: Data exchanged in the replicated case
From b_{CSC} to Pb_{BCSC}

Permutation of the vector: the distributed case

Figure: Data exchanged in the distributed case
Performances
Performances of the matrix permutation

Figure: Acceleration of the matrix permutation on 2, 4, and 8 nodes for different matrices
Conclusion
Conclusion

Goals achieved

- Matrix permutation in distributed memory
- Matrix permutation with multiple constant DoF
- Vector permutation in replicated to distributed case
- Vector permutation in distributed to distributed case
- Distributed sequential solve

Next steps

- Improve the MPI communications
- Implement the distributed multi-threaded solve
- Implement the matrix permutation with variadic DoF
- Implement the vector permutation with variadic DoF