# Validation and evaluation of the Chameleon Lapack interface 

Second year internship

Alycia :)

## What is Chameleon?

- Dense Linear Algebra Library
- LAPACK (OpenBlas, Intel MKL) Multi-Thread
- SCALAPACK (Netlib, Intel MKL) MPI

- Parallel $\longrightarrow$ MPI, PThread, CUDA
- Task based

|  | PARSEC | OPENMP | Quark |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Chameleon Algorithms



## Chameleon Algorithms



## Chameleon Algorithms


RK $\quad$ C $=a \quad A \quad x^{\top}+\beta \quad C$

R2K $C=a \quad A \times B^{\top}+a A^{\top} \times B+B C$

TRF
$\Delta \times$


CHolesky /
lu Decomposirion

5

## Chameleon Algorithms



## Chameleon Algorithms



## Task-based Algorithm: POTRF

$$
N=4
$$

```
Chameleon_potrf( A )
for \(j=0\) to \(\mathrm{N}-1\) do
potrf( \(\left.A_{R W}[j][j]\right)\)
for \(i=j+1\) to \(N-1\) do
\(\operatorname{trsm}\left(A_{R W}[i][j], A_{R}[j][j]\right)\)
done
for \(i=j+1\) to \(N-1\) do
f(A
    potrf( A ARW[j][j] )
        trsm( A ATW[i][j], A A [j][j] )
        syrk( A ARW[i][i], A [i][j] )
        for k = j+1 to i-1 do
            gemm( A AR[i][k], A AR[i][j], A AR[k][j] )
        done
    done
    done
```


## Task-based Algorithm: POTRF

```
Chameleon_potrf(A )
    for j = 0 to N-1 do
        potrf( A AWW[j][j] )
        for i = j+1 to N-1 do
            trsm( A ARW[i][j], A AR[j][j] )
        done
    for i = j+1 to N-1 do
        syrk( A AWW[i][i], A [i][j] )
        for k = j+1 to i-1 do
            gemm( A AR[i][k], A AR[i][j], A AR[k][j] )
        done
        done
    done
```


## Task-based Algorithm: POTRF

```
Chameleon_potrf( A )
    for j = 0 to N-1 do
    potrf( A ANW[j][j] )
    for i = j+1 to N-1 do
            trsm( A ARW [i][j], A AR[j][j] )
    done
    for i = j+1 to N-1 do
        syrk( A ARW[i][i], A AR[i][j] )
        for k = j+1 to i-1 do
            gemm( A AR[i][k], A AR[i][j], A AR[k][j] )
        done
    done
done
```


## Task-based Algorithm: POTRF

```
Chameleon_potrf( A )
    for j = 0 to N-1 do
        potrf( A AWW[j][j] )
        for i = j+1 to N-1 do
            trsm( A ARW
        done
```



```
    for i = j+1 to N-1 do
        syrk( A }\mp@subsup{\textrm{RW}}{[j][i], A}{R}[i][j] 
        for k = j+1 to i-1 do
            gemm( A AR[i][k], A AR[i][j], A AR[k][j] )
        done
    done
done
```



## Task-based Algorithm: POTRF

```
Chameleon_potrf( A )
    for j = 0 to N-1 do
        potrf( A AWW[j][j] )
        for i = j+1 to N-1 do
            trsm( A ARW [i][j], A A [j][j] )
        done
    for i = j+1 to N-1 do
        syrk( A ARW [i][i], A A
        for k = j+1 to i-1 do
            gemm( A AR[i][k], A AR[i][j], A AR[k][j] )
        done
    done
done
```



## Task-based Algorithm: POTRF



```
Chameleon_potrf( A )
    for j = 0 to N-1 do
        potrf( A AWW[j][j] )
        for i = j+1 to N-1 do
            trsm( A ARW [i][j], A A [j][j] )
        done
    for i = j+1 to N-1 do
```



```
        syrk( A ARW[i][i], A AR[i][j] )
        for k = j+1 to i-1 do
            gemm( A ARW [i][k], A A [i][j], A A [k][j] )
        done
    done
done
```



## Task-based Algorithm: POTRF

```
Chameleon_potrf( A )
    for j = 0 to N-1 do
        potrf( A AWW[j][j] )
        for i = j+1 to N-1 do
            trsm( A ARW [i][j], A A [j][j] )
    done
    for i = j+1 to N-1 do
        syrk( A ANW[i][i], A A
        for k = j+1 to i-1 do
            gemm( A AR[i][k], A AR[i][j], A AR[k][j] )
        done
    done
done
```



## Task-based Algorithm: POTRF

```
Chameleon_potrf( A )
    for j = 0 to N-1 do
        potrf( A AWW[j][j] )
        for i = j+1 to N-1 do
            trsm( A ARW [i][j], A A [j][j] )
    done
    for i = j+1 to N-1 do
        syrk( A ARW[i][i], A AR[i][j] )
        for k = j+1 to i-1 do
            gemm( A ARW[i][k], A A [i][j], A A [k][j] )
        done
    done
done
```


## Task-based Algorithm: POTRF

```
Chameleon_potrf( A )
    for j = 0 to N-1 do
        potrf( A AWW[j][j] )
        for i = j+1 to N-1 do
            trsm( A ARW [i][j], A A [j][j] )
    done
    for i = j+1 to N-1 do
        syrk( A ARW [i][i], A AR[i][j] )
        for k = j+1 to i-1 do
            gemm( A AR[i][k], A AR[i][j], A AR[k][j] )
        done
    done
done
```



## Task-based Algorithm: POTRF

Chameleon_potrf( A )
for $j=0$ to $N-1$ do
potrf( $\left.A_{R W}[j][j]\right)$
for $i=j+1$ to $N-1$ do
$\operatorname{trsm}\left(A_{R W}[i][j], A_{R}[j][j]\right)$
done
for $i=j+1$ to $N-1$ do

syrk ( $A_{R W}$ [i][i], $\left.A_{R}[i][j]\right)$
for $k=j+1$ to $i-1$ do
gemm ( $\left.A_{R W}[i][k], A_{R}[i][j], A_{R}[k][j]\right)$
done
done
done

## Chameleon Matrix Descriptor



Chameleon CCRB (Column Column Rectangular Block)

| 1 | 4 | 7 | 13 |
| :---: | :---: | :---: | :---: |
| 2 | 5 | 8 | 14 |
| 3 | 6 | 9 | 15 |
| 10 | 11 | 12 | 16 |

Alloc-By-Tile

$$
\rightarrow \rightarrow \rightarrow \quad \rightarrow \rightarrow
$$


】

## So what did I do?



## Chameleon Interfaces




Synchronisation



Synchronisation


| chameleon_pzalgo |  |
| :---: | :---: |
|  |  |
|  | IIIII |

## Chameleon Interfaces



## Conversion In-Place vs OUt-Of-Place



## Performances: machines used

|  | NUMBER OF CORES | TYPE OF CORE |
| :---: | :---: | :---: |
| BORA | $2 \times 18$ | Intel <br> CascadeLake |
| IONDA | 2x 32 <br> DIABLO | AMD Zen2 <br> AMD Zen3 |



## Performances

Chameleon

L A P A C K
$L$-A P -A C -K
$\begin{array}{llllll}\mathbf{L} & \mathbf{A} & \mathbf{P} & \mathbf{A} & -\mathbf{C} & -\mathbf{K} \\ \mathbf{L} & -\mathbf{A} & \mathbf{P} & -\mathbf{A} & -\mathbf{C} & \mathbf{K}\end{array} \quad$ APACK
L A $\quad$-P $-\mathbf{- A} \quad \mathbf{C} \quad K$
L -A -P A C -K


Library
-- MKL Lapack interface
-- Chameleon Lapack interface

## Performances

Lapack-LAYOUT



CONVERSION
In-Place

IIIIIIIIIIII II! II! II! !【IIIII! ! แ1 $14 \downarrow \downarrow \downarrow$


## Conversion_type

- in-place
- out-of-place


## Performances

Same behaviour with diablo

Opposite behaviour with zonda

Same behaviour with bora


Conversion_type
Scheduler

- In-place
$\rightarrow$ StarPU
Parsec
- Out-of-place
$\rightarrow$ OpenMP
Quark


## Singular Value Decomposition



## Singular Value Decomposition



## Conclusion

Validation of the Standard API:

- Numerical

Benchmark of the Lapack interface $\qquad$


Singular Value Decomposition:

- Testing
- Numerical validation of the singular values
- Numerical validation of the singular vectors 000
- Improvement of the algorithm using trees ○○○


## Françooiiiis, j'ai une questiooonnn



