Validation and evaluation of the Chameleon Lapack interface

Second year internship

Alycia :)
What is Chameleon?

- Dense Linear Algebra Library
 - LAPACK (OpenBlas, Intel MKL) Multi-Thread
 - SCALAPACK (Netlib, Intel MKL) MPI
- Parallel → MPI, PThread, CUDA
- Task based
Chameleon Algorithms

MM
\[C = \alpha A x B + \beta C \]

RK
\[C = \alpha A x A^T + \beta C \]

R2K
\[C = \alpha A x B^T + \alpha A^T x B + \beta C \]

BLAS3
Chameleon Algorithms

MM
\[C = \alpha A \times B + \beta C \]

RK
\[C = \alpha A \times A^T + \beta C \]

R2K
\[C = \alpha A \times B^T + \alpha A^T \times B + \beta C \]

TRF
\[A = L \times U \]
\[A = L \times L' \]
\[A = U^T \times U \]

Cholesky / **LU Decomposition**

SV / **TRS**
\[A \times X = B \]

Tri
\[A^{-1} \]
Chameleon Algorithms

QR / LQ Factorisation

<table>
<thead>
<tr>
<th>Method</th>
<th>Factorisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>$C = \alpha A x B + \beta C$</td>
</tr>
<tr>
<td>RK</td>
<td>$C = \alpha A x A^T + \beta C$</td>
</tr>
<tr>
<td>R2K</td>
<td>$C = \alpha A x B^T + \alpha A^T x B + \beta C$</td>
</tr>
</tbody>
</table>

BLAS3

QR

<table>
<thead>
<tr>
<th>A</th>
<th>$= Q x R$</th>
</tr>
</thead>
</table>

LQ

<table>
<thead>
<tr>
<th>A</th>
<th>$= L x Q$</th>
</tr>
</thead>
</table>

CHOLESKY / LU Decomposition

<table>
<thead>
<tr>
<th>A</th>
<th>$= L x U$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>$= L x L'$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>$= U x U^T$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>$= A^{-1}$</th>
</tr>
</thead>
</table>

MM

| $C = \alpha A x B + \beta C$ |

RK

| $C = \alpha A x A^T + \beta C$ |

R2K

| $C = \alpha A x B^T + \alpha A^T x B + \beta C$ |

TRF

| $A = L x U$ |

| $A = L x L'$ |

| $A = U x U^T$ |

| $A = A^{-1}$ |

SV / TRS

| $A x X = B$ |
Chameleon Algorithms

QR / LQ Factorisation
- MM: \(C = \alpha A \times B + \beta C \)
- RK: \(C = \alpha A \times A^T + \beta C \)
- R2K: \(C = \alpha A \times B^T + \alpha A^T \times B + \beta C \)
- TRF: \(A = L \times U \)

BLAS3

Singular Value Decomposition
- SVD: \(A = U \times \Sigma \times V^T \)

Cholesky / LU Decomposition
- TRF: \(A = L \times \) (with transpose)
- SV / TRS: \(A \times X = B \)
- TRI: \(A^{-1} = U \times U^T \)
Chameleon Algorithms

MM
\[C = \alpha A x B + \beta C \]

RK
\[C = \alpha A x A^T + \beta C \]

R2K
\[C = \alpha A x B^T + \alpha A^T x B + \beta C \]

TRF
\[A = L x U \]
\[A = L x L^T \]
\[A = \text{TRI } A^{-1} \]

QR / LQ Factorisation
\[A = Q x R \]
\[A = L x Q \]

BLAS3

CHOLESKY / LU Decomposition
\[A = L x U \]
\[A x X = B \]

Singular Value Decomposition
\[A = U x L x Q \]

SVD

QR

LQ

LU Decomposition

SVD
Task-based Algorithm: POTRF

Chameleon_potrf(A)
 for j = 0 to N-1 do
 potrf(A_{RW}[j][j])
 for i = j+1 to N-1 do
 trsm(A_{RW}[i][j], A_R[j][j])
 done
 for i = j+1 to N-1 do
 syrk(A_{RW}[i][i], A_R[i][j])
 for k = j+1 to i-1 do
 gemm(A_{RW}[i][k], A_R[i][j], A_R[k][j])
 done
 done
 done
Task-based Algorithm: POTRF

Chameleon_potrf(A)

for j = 0 to N-1 do
 potrf(A_{RW}[j][j])
 for i = j+1 to N-1 do
 trsm(A_{RW}[i][j], A_{R}[j][j])
 done
 for i = j+1 to N-1 do
 syrk(A_{RW}[i][i], A_{R}[i][j])
 for k = j+1 to i-1 do
 gemm(A_{RW}[i][k], A_{R}[i][j], A_{R}[k][j])
 done
 done
 done
done
Task-based Algorithm: POTRF

Chameleon_potrf(A)
for j = 0 to N-1 do
 \texttt{potrf}(A_{RW}[j][j])
 for i = j+1 to N-1 do
 \texttt{trsm}(A_{RW}[i][j], A_R[j][j])
 done
 for i = j+1 to N-1 do
 \texttt{syrk}(A_{RW}[i][i], A_R[i][j])
 for k = j+1 to i-1 do
 \texttt{gemm}(A_{RW}[i][k], A_R[i][j], A_R[k][j])
 done
 done
done
Task-based Algorithm: POTRF

Chameleon_potrf(A)
 for j = 0 to N-1 do
 potrf(A_{RW}[j][j])
 for i = j+1 to N-1 do
 trsm(A_{RW}[i][j], A_R[j][j])
 done
 for i = j+1 to N-1 do
 syrk(A_{RW}[i][i], A_R[i][j])
 for k = j+1 to i-1 do
 gemm(A_{RW}[i][k], A_R[i][j], A_R[k][j])
 done
 done
 done

10
Task-based Algorithm: POTRF

Chameleon_potrf(A)
for j = 0 to N-1 do
 potrf(A_{RW}[j][j])
 for i = j+1 to N-1 do
 trsm(A_{RW}[i][j], A_R[j][j])
 done
for i = j+1 to N-1 do
 syrk(A_{RW}[i][i], A_R[i][j])
 for k = j+1 to i-1 do
 gemm(A_{RW}[i][k], A_R[i][j], A_R[k][j])
 done
done
done
Task-based Algorithm: **POTRF**

```plaintext
Chameleon_potrf( A )
  for j = 0 to N-1 do
    potrf( A_RW[j][j] )
    for i = j+1 to N-1 do
      trsm( A_RW[i][j], A_R[j][j] )
    done
  for i = j+1 to N-1 do
    syrk( A_RW[i][i], A_R[i][j] )
    for k = j+1 to i-1 do
      gemm( A_RW[i][k], A_R[i][j], A_R[k][j] )
    done
  done
```

Task-based Algorithm: POTRF

Chameleon_potrf(A)
for j = 0 to N-1 do
 potrf(A_{RW}[j][j])
 for i = j+1 to N-1 do
 trsm(A_{RW}[i][j], A_{R}[j][j])
 done
for i = j+1 to N-1 do
 syrk(A_{RW}[i][i], A_{R}[i][j])
 for k = j+1 to i-1 do
 gemm(A_{RW}[i][k], A_{R}[i][j], A_{R}[k][j])
 done
done
done
done
Task-based Algorithm: POTRF

Chameleon_potrf(A)
for j = 0 to N-1 do
 potrf(A_RW[j][j])
 for i = j+1 to N-1 do
 trsm(A_RW[i][j], A_R[j][j])
done
for i = j+1 to N-1 do
 syrk(A_RW[i][i], A_R[i][j])
 for k = j+1 to i-1 do
 gemm(A_RW[i][k], A_R[i][j], A_R[k][j])
done
done
done
Task-based Algorithm: POTRF

Chameleon_potrf(A)
for j = 0 to N-1 do
 potrf(A_{RW}[j][j])
 for i = j+1 to N-1 do
 trsm(A_{RW}[i][j], A_R[j][j])
done
for i = j+1 to N-1 do
 syrk(A_{RW}[i][i], A_R[i][j])
 for k = j+1 to i-1 do
 gemm(A_{RW}[i][k], A_R[i][j], A_R[k][j])
done
done
done
Task-based Algorithm: POTRF

Chameleon_potrf(A)
 for j = 0 to N-1 do
 potrf(\(A_{RW}[j][j] \))
 for i = j+1 to N-1 do
 trsm(\(A_{RW}[i][j], A_{R}[j][j] \))
 done
 for i = j+1 to N-1 do
 syrk(\(A_{RW}[i][i], A_{R}[i][j] \))
 for k = j+1 to i-1 do
 gemm(\(A_{RW}[i][k], A_{R}[i][j], A_{R}[k][j] \))
 done
 done
 done
Chameleon Matrix Descriptor

LAPACK CM (Column Major)

CHAMELEON CCRB (Column Column Rectangular Block)

ALLOC-BY-TILE

ALLOC-GLOBAL
So what did I do?
Chameleon Interfaces

- Chameleon_zalgo
- Chameleon_zalgo_Tile
- Chameleon_zalgo_Tile_Async
- Synchronisation

- Chameleon_zalgo_Tile_Async
- Synchro
Chameleon Interfaces

- **Chameleon_zalgo**
 - No tests or checks made

- **Chameleon_zalgo_Tile**
 - Tested and checked since 2020 (commit n. 166) by L. Barros de Assis during his internship

- **Chameleon_zalgo_Tile_Async**
 - Tested indirectly since 2020 by Lucas
 - Tested directly since 2022 (commit n. 262)
Conversion **In-Place vs Out-Of-Place**

In-Place

A_{CM}

$DescA_{CM}$

Out-Of-Place

$DescA_{CCR}$

$Out-Of-Place$
Performances: machines used

<table>
<thead>
<tr>
<th></th>
<th>Number of Cores</th>
<th>Type of Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>BORA</td>
<td>2x 18</td>
<td>Intel CascadeLake</td>
</tr>
<tr>
<td>ZONDA</td>
<td>2x 32</td>
<td>AMD Zen2</td>
</tr>
<tr>
<td>DIABLO</td>
<td>2x 64</td>
<td>AMD Zen3</td>
</tr>
</tbody>
</table>
Performances

Chameleon

LAPACK

Library
- MKL Lapack interface
- Chameleon Lapack interface
Performances

LAPACK-Layout

Conversion
- In-Place
- Out-Of-Place

Conversion Type
- in-place
- out-of-place
Performances

Same behaviour with diablo

Opposite behaviour with zonda

Same behaviour with bora
Singular Value Decomposition

\[A = U_1 \times \Sigma \times V^T \]

\[A = U_1 \times U_2 \times \Sigma \times V^T \]

\[A = U_1 \times U_2 \times U_3 \times \Sigma \times V^T \]

```
Chameleon_zgebrd_ge2gb
Lapacke_zgbbbrd
Lapacke_zdsqr
```

```
A
U
\Sigma
V^T
```
Singular Value Decomposition

Chameleon_zgebrd_ge2gb → Had minor errors
Needs to have the tree version

Chameleon_pztile2band → Was incorrect

Lapacke_zgbbbrd
Conclusion

Validation of the Standard API:
- Numerical ✓
- On CPU ✓
- On GPU ✓

Benchmark of the Lapack interface ✓

Singular Value Decomposition:
- Testing ✓
- Numerical validation of the singular values ✓
- Numerical validation of the singular vectors ⬤⬤⬤
- Improvement of the algorithm using trees ⬤⬤⬤
Françooiiis, j’ai une questiooonnnn