DF4DL: DataFlow for Deep Learning
Deep Neural Networks \Rightarrow DataFlow?
DF4DL: DataFlow for Deep Learning
Deep Neural Networks ⇒ DataFlow?

DataFlow, what for?
May compute guarantees on:

- liveness
- throughput
- memory usage
- real-time properties

Statically (e.g. SDF) or dynamically (e.g. RDF)
DF4DL: DataFlow for Deep Learning
Deep Neural Networks ⇒ DataFlow?

DataFlow, what for?
May compute guarantees on:

- liveness
- throughput
- memory usage
- real-time properties

Statically (e.g. SDF) or **dynamically** (e.g. RDF)
Our memory peak problem

Input
A directed acyclic task graph, with memory costs:

- on each edge (data I/O)
- on each node (computation)

Sequential execution without preemption, no timing properties.
Our memory peak problem

Input
A directed acyclic task graph, with memory costs:

- on each edge (data I/O)
- on each node (computation)

Sequential execution without preemption, no timing properties.

Output

- a schedule minimizing the memory peak
- its corresponding memory peak
When to execute E?
Example

When to execute E? $A; E ; B; C; D$
Previous known results

Complexity

[**Sethi’73**] PebbleGame is NP-complete (time)

[**KS’74**] Generate all Linear Extensions (linear in space)

[**BW’91**] Counting Linear Extensions is \#P-complete (⊆ NP time)

Specific cases

[Liu’87] trees in quadratic time

[KLMU’18] Series-Parallel DAG in cubic time
Previous known results

Complexity

[Sethi’73] PebbleGame is NP-complete (time)

[KS’74] Generate all Linear Extensions (linear in space)

[BW’91] Counting Linear Extensions is $\#P$-complete (\supseteq NP time)

Specific cases

[Liu’87] trees in quadratic time

[KLMU’18] Series-Parallel DAG in cubic time
Example of an SP-DAG

(a sort of recursive fork-join graph)
“Optimal” graph transformations (contrib. 1)
Why graph transformations?

Key idea: reduce the combinatorial explosion by...

- reducing the number of nodes
- increasing the number of dependencies (from partial order to total order)
Why graph transformations?

Key idea: reduce the combinatorial explosion by...

- reducing the number of nodes
- increasing the number of dependencies
 (from partial order to total order)

“Optimal” transformations
preserve the minimal memory peak
Internal representation: node Peak and Impact

Node $A^{(\text{peak})}$ produces r tokens and consumes s tokens.
Internal representation: node Peak and Impact

Node $A_{\text{peak}}^{\text{impact}}$ produces r tokens and consumes s tokens.

Initial values of Peak and Impact

$\text{impact} = r - s \in \mathbb{Z}$ and $\text{peak} \in \mathbb{N}$, or peak variants:

- $A_{\max(0,r-s)}^{r-s}$ in the Consume-Before-Produce model
- A_{r-s}^{r} in the Produce-Before-Consum model

(no further need to edge attribute)
Peak and Impact of a node sequence
Can be applied to any schedule.

\[A^{(p_a)}_{i_a}; B^{(p_b)}_{i_b} = (A; B)^{\max(p_a, p_b+i_a)}_{i_a+i_b} \] (PI)

Theorem
Operation (PI) is associative.
Transitive reduction

Simply remove all transitive edges. (e.g. from B to D in red)

Does not modify node peak/impact!
Simply remove all transitive edges.
(e.g. from B to D in red)
Transitive reduction

Simply remove all transitive edges.
(e.g. from B to D in red)

Does not modify node peak/impact!
Clustering rules (C1-C2): single successor/predecessor

\[
\text{Succ}(A) = \{B\} \land (i_A \geq 0) \land (p_B + i_A \geq p_A) \quad (C1)
\]
Clustering rules (C1-C2): single successor/predecessor

\[\text{Succ}(A) = \{B\} \land (i_A \geq 0) \land (p_B + i_A \geq p_A) \quad \text{(C1)} \]

Reduce the number of nodes!
Clustering rules (C1-C2): single successor/predecessor

Succ(A) = \{ B \} \land (i_A \geq 0) \land (p_B + i_A \geq p_A) \quad (C1)

Reduce the number of nodes!

Pred(B) = \{ A \} \land (i_B \leq 0) \land (p_A \geq p_B + i_A) \quad (C2)
Sequentialization rule (S1): common predecessors

\[\text{Pred}(A) \subseteq \text{Pred}^+(B) \land (i_A \leq 0) \land (p_B \geq p_A) \]

(S1)

Pred\(^+\) is the set of ancestors, i.e. predecessors in transitive closure
Sequentialization rule (S1): common predecessors

\[
\text{Pred}(A) \subseteq \text{Pred}^+(B) \land (i_A \leq 0) \land (p_B \geq p_A) \tag{S1}
\]

\text{Pred}^+ \text{ is the set of ancestors, i.e. predecessors in transitive closure}

Increase the number of dependencies!
Sequentialization rule (S1): common predecessors

\[\text{Pred}(A) \subseteq \text{Pred}^+(B) \land (i_A \leq 0) \land (p_B \geq p_A) \] (S1)

Pred\(^+\) is the set of ancestors,

i.e. predecessors in transitive closure

Increase the number of dependencies!

(similar rule for common successors with Succ\(^+\))
Global algorithm

/* Takes a schedule graph G and compresses it until none of
the transformations apply */

1 $\text{changed} := \text{false}$;
2 repeat
3 \hspace{1em} repeat
4 \hspace{2em} repeat
5 \hspace{3em} clustering(G); $\triangleright \mathcal{O}(n)$
6 \hspace{2em} until $\neg \text{changed}$;
7 \hspace{2em} basic_sequentialization(G); $\triangleright \mathcal{O}(n^2)$
8 \hspace{2em} until $\neg \text{changed}$;
9 \hspace{1em} complete_sequentialization(G); $\triangleright \mathcal{O}(n^3)$
10 \hspace{1em} transitive_reduction(G); $\triangleright \mathcal{O}(n^3)$
11 \hspace{1em} until $\neg \text{changed}$;
Theoretical results

In general
Compressed graph always ensures at least one schedule having the minimal peak. (worst-case complexity: quartic time $O(n^4)$)
Theoretical results

In general
Compressed graph always ensures at least one schedule having the minimal peak. (worst-case complexity: quartic time $O(n^4)$)

Specific cases
If reduced to a single node, it contains one of the schedule ensuring minimal peak. This includes:

- **trees** compressed to a single node (in quadratic time)
- **SP-DAG** compressed to a single node (in cubic time)
Branch and Bound search (contrib. 2)
Explore linear extensions of the graph...
New *branch* at each scheduled node
(storing all the ready unexplored ones),
and continue with Depth-First-Search (DFS).
General idea of Branch and Bound

Explore linear extensions of the graph...
New *branch* at each scheduled node
(storing all the ready unexplored ones),
and continue with Depth-First-Search (DFS).

...but not all
New *bound* at each schedule having minimal peak
(stop DFS on next nodes implying a higher peak).

→ backtrack to previous rank if no more unexplored nodes
General idea of Branch and Bound

Explore linear extensions of the graph...
New *branch* at each scheduled node
(storing all the ready unexplored ones),
and continue with Depth-First-Search (DFS).

...but not all
New *bound* at each schedule having minimal peak
(stop DFS on next nodes implying a higher peak).
← backtrack to previous rank if no more unexplored nodes

Optimizations (contributions)
- a longer backtrack
- a smaller ready list
Peak backtrack optimization

![Graph showing the relationship between live memory and schedule length.](image-url)
Peak backtrack optimization

![Graph showing live memory over schedule length](image-url)
Peak backtrack optimization

Backtrack until first peak!
Negative impact optimization

![Graph showing the relationship between schedule length and live memory. The graph indicates a peak in live memory at schedule length 6, followed by a decline.](image)
Negative impact optimization

![Graph showing live memory versus schedule length](image-url)
Negative impact optimization

Negative impact node first!
(smaller branching factor)
Practical results

Instance size: our Branch and Bound
Graph of \(\approx 50 \) nodes always solved in \(\leq 1 \) sec.
Time generally explodes if more than 100 nodes,
but B&B quickly finds at least one solution.
Practical results

Instance size: our Branch and Bound
Graph of ≈ 50 nodes always solved in ≤ 1 sec.
Time generally explodes if more than 100 nodes, but B&B quickly finds at least one solution.

Instance size: all linear extensions
≈ 15 nodes to be solved in ≤ 1 sec.
Practical results

Instance size: our Branch and Bound
Graph of ≈ 50 nodes always solved in ≤ 1 sec.
Time generally explodes if more than 100 nodes, but B&B quickly finds at least one solution.

Instance size: all linear extensions
≈ 15 nodes to be solved in ≤ 1 sec.

Important parameter: sort function for ready list
Will impact on the peak quality of first DFS.
Experiments
Memory peak for Satellite

| satellite | $| G |$ | [RWM’95] | [MB’01] | [KLMU’18] | [ours] | sec. |
|-----------|-----|---------|----------|----------|-----------|--------|------|
| flat SAS | 22 | 1,920 | — | 1,680 | 1,680 | 0.01 |
| SDF | 4,515| — | 991 | 960 | 960 | 24.5 |
Memory peak for Satellite

| satellite | $|G|$ | [RWM’95] | [MB’01] | [KLMU’18] | [ours] | sec. |
|-----------|-----|---------|---------|-----------|--------|------|
| flat SAS | 22 | 1,920 | — | 1,680 | 1,680 | 0.01 |
| SDF | 4,515| — | 991 | 960 | 960 | 24.5 |

Previous runtime for flat SAS [RWM’95]:
4 days (and wrong result) with ILP.

Peaks of [MB’01] and [KLMU’18] are over-estimated.
Memory peak for Satellite

| satellite | $|G|$ | [RWM’95] | [MB’01] | [KLMU’18] | [ours] | sec. |
|-----------|-----|---------|---------|-----------|--------|------|
| flat SAS | 22 | 1,920 | — | 1,680 | 1,680 | 0.01 |
| SDF | 4,515| — | 991 | 960 | 960 | 24.5 |

Previous runtime for flat SAS [RWM’95]:
4 days (and wrong result) with ILP

Peaks of [MB’01] and [KLMU’18] are over-estimated.
Memory peak for QMF Filterbank

| Filterbank | $|G|$ | [MB’01] | [KLMU’18] | [ours] | G^C | sec. |
|---------------|-----|---------|-----------|--------|------|------|
| qmf23_2d | 90 | 22 | 27 | 14 | 1 | 0.07 |
| qmf23_3d | 378 | 63 | 81 | 32 | 1 | 0.6 |
| qmf23_5d | 5,346 | 492 | 709 | 248 | 1 | 445.4|
| qmf12_2d | 40 | 9 | 10 | 7 | 1 | 0.02 |
| qmf12_3d | 112 | 16 | 20 | 11 | 1 | 0.06 |
| qmf12_5d | 704 | 58 | 79 | 35 | 1 | 1.7 |
| qmf235_2d | 250 | 55 | 78 | 24 | 24 | 0.3 |
| qmf235_3d | 1,750 | 240 | 189 | 47† | 285 | T/O |
| qmf235_5d | 68,750 | 5,690 | — | 3,401† | — | T/O |

Gray = Wrong qmf version but similar peaks
(always reduced to 1 node on correct version, no T/O)
Conclusion
Conclusion

New peak-preserving transformations
Always compress trees and SP-DAG into a single node, and many more graphs too (at worst quartic time).
New peak-preserving transformations
Always compress trees and SP-DAG into a single node, and many more graphs too (at worst quartic time).

New optimal Branch and Bound
Handle instances up to 50 nodes in a few seconds.
Conclusion

New peak-preserving transformations
Always compress trees and SP-DAG into a single node, and many more graphs too (at worst quartic time).

New optimal Branch and Bound
Handle instances up to 50 nodes in a few seconds.

Future work

- checkpointing a.k.a. rematerialization (a.k.a. reversible PebbleGame?)
- apply same kind of transformations to other problems?
References

[Sethi’73] Complete Register Allocation Problems, R. Sethi (1973)

[BW’91] Counting Linear Extensions is \#P-Complete, G. Brightwell and P. Winkler (1991)

