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Context: DF4DL post-doc

DF4DL: DataFlow for Deep Learning
Deep Neural Networks ⇒ DataFlow?

DataFlow, what for?
May compute guarantees on:

• liveness
• throughput
• memory usage
• real-time properties

Statically (e.g. SDF) or dynamically (e.g. RDF)
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Our memory peak problem

Input
A directed acyclic task graph, with memory costs:

• on each edge (data I/O)
• on each node (computation)

Sequential execution without preemption, no timing properties.

Output
• a schedule minimizing the memory peak
• its corresponding memory peak
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Example

A B C D
E

1 1 2 2 3 3
4 4

4
4 1

1

When to execute E ?

A;E;B;C;D
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Previous known results

Complexity
[Sethi’73] PebbleGame is NP-complete (time)

[KS’74] Generate all Linear Extensions (linear in space)
[BW’91] Counting Linear Extensions is #P-complete

(⊇ NP time)

Specific cases
[Liu’87] trees in quadratic time

[KLMU’18] Series-Parallel DAG in cubic time
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Example of an SP-DAG

(a sort of recursive fork-join graph)
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“Optimal” graph transformations
(contrib. 1)



Why graph transformations?

Key idea: reduce the combinatorial explosion by…
• reducing the number of nodes
• increasing the number of dependencies

(from partial order to total order)

“Optimal” transformations
↪→ preserve the minimal memory peak
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From task graph to schedule graphs

Internal representation: node Peak and Impact

A... ...
rs Node A(

peak
impact) produces r tokens and

consumes s tokens.

Initial values of Peak and Impact
impact = r − s ∈ Z and peak ∈ N, or peak variants:

• A(
max(0,r−s)

r−s ) in the Consume-Before-Produce model
• A(

r
r−s) in the Produce-Before-Consume model

(no further need to edge attribute)
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Peak of a schedule

Peak and Impact of a node sequence
Can be applied to any schedule.

A(
pa
ia );B(

pb
ib
)
= (A;B)(

max(pa,pb+ia)
ia+ib

) (PI)

Theorem
Operation (PI) is associative.
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Transitive reduction

A(
5
5) B(

6
5) C(3

1) D( 0
−8)

E(
1

−3)

Simply remove all transitive edges.
(e.g. from B to D in red)

Does not modify node peak/impact!
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Clustering rules (C1-C2): single successor/predecessor

1 A

2
B 3 ⇛

1

2
A;B 3

Succ(A) = {B} ∧ (iA ≥ 0) ∧ (pB + iA ≥ pA) (C1)

Reduce the number of nodes!

1 A
B

2

3
⇛ 1 A;B

2

3

Pred(B) = {A} ∧ (iB ≤ 0) ∧ (pA ≥ pB + iA) (C2)
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Sequentialization rule (S1): common predecessors

1

A

B

2

3
+ ⇛ A

1
B

2

3+

Pred(A) ⊆ Pred+(B) ∧ (iA ≤ 0) ∧ (pB ≥ pA) (S1)

Pred+ is the set of ancestors,
i.e. predecessors in transitive closure

Increase the number of dependencies!

(similar rule for common successors with Succ+)
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Global algorithm

/* Takes a schedule graph G and compresses it until none of

the transformations apply */

1 changed := false;
2 repeat
3 repeat
4 repeat
5 clustering(G); ▷ O(n)
6 until ¬ changed;
7 basic_sequentialization(G); ▷ O(n2)

8 until ¬ changed;
9 complete_sequentialization(G); ▷ O(n3)

10 transitive_reduction(G); ▷ O(n3)

11 until ¬ changed;
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Theoretical results

In general
Compressed graph always ensures at least one schedule having the
minimal peak. (worst-case complexity: quartic time O(n4))

Specific cases
If reduced to a single node, it contains one of the schedule
ensuring minimal peak. This includes:

trees compressed to a single node (in quadratic time)
SP-DAG compressed to a single node (in cubic time)
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Branch and Bound search
(contrib. 2)



General idea of Branch and Bound

Explore linear extensions of the graph…
New branch at each scheduled node
(storing all the ready unexplored ones),
and continue with Depth-First-Search (DFS).

…but not all
New bound at each schedule having minimal peak
(stop DFS on next nodes implying a higher peak).
↪→ backtrack to previous rank if no more unexplored nodes

Optimizations (contributions)
• a longer backtrack
• a smaller ready list
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Peak backtrack optimization
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Negative impact optimization
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Practical results

Instance size: our Branch and Bound
Graph of ≈ 50 nodes always solved in ≤ 1 sec.
Time generally explodes if more than 100 nodes,
but B&B quickly finds at least one solution.

Instance size: all linear extensions
≈ 15 nodes to be solved in ≤ 1 sec.

Important parameter: sort function for ready list
Will impact on the peak quality of first DFS.
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Experiments



Memory peak for Satellite

satellite |G| [RWM’95] [MB’01] [KLMU’18] [ours] sec.

flat SAS 22 1,920 — 1,680 1,680 0.01
SDF 4,515 — 991 960 960 24.5

Previous runtime for flat SAS [RWM’95]:
4 days (and wrong result) with ILP

Peaks of [MB’01] and [KLMU’18] are over-estimated.
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Memory peak for QMF Filterbank

Filterbank |G| [MB’01] [KLMU’18] [ours] |GC| sec.

qmf23_2d 90 22 27 14 1 0.07
qmf23_3d 378 63 81 32 1 0.6
qmf23_5d 5,346 492 709 248 1 445.4

qmf12_2d 40 9 10 7 1 0.02
qmf12_3d 112 16 20 11 1 0.06
qmf12_5d 704 58 79 35 1 1.7

qmf235_2d 250 55 78 24 24 0.3
qmf235_3d 1,750 240 189 47† 285 T/O
qmf235_5d 68,750 5,690 — 3,401† — T/O

Gray = Wrong qmf version but similar peaks
(always reduced to 1 node on correct version, no T/O)
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Conclusion



Conclusion

New peak-preserving transformations
Always compress trees and SP-DAG into a single node,
and many more graphs too (at worst quartic time).

New optimal Branch and Bound
Handle instances up to 50 nodes in a few seconds.

Future work
• checkpointing a.k.a. rematerialization

(a.k.a. reversible PebbleGame?)
• apply same kind of transformations to other problems?
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