Sequential Scheduling of Dataflow Graphs for Memory Peak Minimization

Pascal Fradet, Alain Girault, <u>Alexandre Honorat</u> April 27, 2023

Ínría Grenoble — SPADES team

DF4DL: DataFlow for Deep Learning Deep Neural *Networks* \Rightarrow DataFlow?

DF4DL: DataFlow for Deep Learning Deep Neural *Networks* \Rightarrow DataFlow?

DataFlow, what for?

May compute guarantees on:

- liveness
- throughput
- memory usage
- real-time properties

Statically (e.g. SDF) or dynamically (e.g. RDF)

DF4DL: DataFlow for Deep Learning Deep Neural *Networks* \Rightarrow DataFlow?

DataFlow, what for?

May compute guarantees on:

- liveness
- throughput
- memory usage
- real-time properties

Statically (e.g. SDF) or dynamically (e.g. RDF)

Input

A directed acyclic task graph, with memory costs:

- on each edge (data I/O)
- on each node (computation)

Sequential execution without preemption, no timing properties.

Input

A directed acyclic task graph, with memory costs:

- on each edge (data I/O)
- on each node (computation)

Sequential execution without preemption, no timing properties.

Output

- a schedule minimizing the memory peak
- its corresponding memory peak

When to execute *E* ?

When to execute E ? A; E; B; C; D

Complexity

- [Sethi'73] PebbleGame is NP-complete (time)
 - [KS'74] Generate all Linear Extensions (linear in space)
 - **[BW'91]** Counting Linear Extensions is #P-complete (\supseteq NP time)

Complexity

[Sethi'73] PebbleGame is NP-complete (time)
[KS'74] Generate all Linear Extensions (linear in space)
[BW'91] Counting Linear Extensions is #P-complete (⊇ NP time)

Specific cases

[Liu'87] trees in quadratic time [KLMU'18] Series-Parallel DAG in cubic time

Example of an SP-DAG

(a sort of recursive fork-join graph)

"Optimal" graph transformations (contrib. 1)

Key idea: reduce the combinatorial explosion by...

- reducing the number of nodes
- increasing the number of dependencies (from partial order to total order)

Key idea: reduce the combinatorial explosion by...

- reducing the number of nodes
- increasing the number of dependencies (from partial order to total order)

"Optimal" transformations

 \hookrightarrow preserve the minimal memory peak

Internal representation: node Peak and Impact

Node $A^{(\text{peak})}$ produces *r* tokens and consumes *s* tokens.

Internal representation: node Peak and Impact

Node $A^{(\text{peak})}_{(\text{impact})}$ produces *r* tokens and consumes *s* tokens.

Initial values of Peak and Impact impact = $r - s \in \mathbb{Z}$ and peak $\in \mathbb{N}$, or peak variants:

- $A^{\binom{\max(0,r-s)}{r-s}}$ in the Consume-Before-Produce model
- $A^{\binom{r}{r-s}}$ in the Produce-Before-Consume model

(no further need to edge attribute)

Peak and Impact of a node sequence Can be applied to any schedule.

$$A^{\binom{p_a}{i_a}}; B^{\binom{p_b}{i_b}} = (A; B)^{\binom{max(p_a, p_b + i_a)}{i_a + i_b}}$$
(PI)

Theorem Operation (PI) is associative.

Transitive reduction

Transitive reduction

Simply remove all transitive edges. (e.g. from *B* to *D* in red)

Transitive reduction

Simply remove all transitive edges. (e.g. from *B* to *D* in red)

Does not modify node peak/impact!

Clustering rules (C1-C2): single successor/predecessor

 $\operatorname{Succ}(A) = \{B\} \land (i_A \ge 0) \land (p_B + i_A \ge p_A)$ (C1)

Clustering rules (C1-C2): single successor/predecessor

Reduce the number of nodes!

Clustering rules (C1-C2): single successor/predecessor

Reduce the number of nodes!

Sequentialization rule (S1): common predecessors

 $\operatorname{Pred}(A) \subseteq \operatorname{Pred}^+(B) \land (i_A \leq 0) \land (p_B \geq p_A)$ (S1)

 ${\rm Pred}^+$ is the set of ancestors, i.e. predecessors in transitive closure

Sequentialization rule (S1): common predecessors

 $\operatorname{Pred}(A) \subseteq \operatorname{Pred}^+(B) \land (i_A \leq 0) \land (p_B \geq p_A)$ (S1)

Pred⁺ is the set of ancestors,i.e. predecessors in transitive closure

Increase the number of dependencies!

Sequentialization rule (S1): common predecessors

 $\operatorname{Pred}(A) \subseteq \operatorname{Pred}^+(B) \land (i_A \leq 0) \land (p_B \geq p_A)$ (S1)

 Pred^+ is the set of ancestors, i.e. predecessors in transitive closure

Increase the number of dependencies!

(similar rule for common successors with $Succ^+$)

Global algorithm

```
/* Takes a schedule graph G and compresses it until none of
       the transformations apply
                                                                               */
 1 changed := false;
 2 repeat
 3
        repeat
            repeat
 4
                 clustering(G); \triangleright \mathcal{O}(n)
 5
            until \neg changed;
 6
            basic_sequentialization(G); \triangleright O(n^2)
 7
        until \neg changed;
 8
        complete_sequentialization(G); \triangleright O(n^3)
 9
        transitive_reduction(G); \triangleright O(n^3)
10
11 until \neg changed;
```

In general Compressed graph always ensures at least one schedule having the minimal peak. (worst-case complexity: quartic time $\mathcal{O}(n^4)$)

In general

Compressed graph always ensures at least one schedule having the minimal peak. (worst-case complexity: quartic time $O(n^4)$)

Specific cases

If reduced to a single node, it contains one of the schedule ensuring minimal peak. This includes:

trees compressed to a single node (in quadratic time)
SP-DAG compressed to a single node (in cubic time)

Branch and Bound search (contrib. 2)

Explore linear extensions of the graph... New *branch* at each scheduled node (storing all the ready unexplored ones), and continue with Depth-First-Search (DFS).

Explore linear extensions of the graph... New *branch* at each scheduled node (storing all the ready unexplored ones), and continue with Depth-First-Search (DFS).

...but not all

New *bound* at each schedule having minimal peak

(stop DFS on next nodes implying a higher peak).

 \hookrightarrow backtrack to previous rank if no more unexplored nodes

Explore linear extensions of the graph... New *branch* at each scheduled node (storing all the ready unexplored ones), and continue with Depth-First-Search (DFS).

...but not all

New *bound* at each schedule having minimal peak (stop DFS on next nodes implying a higher peak).

 \hookrightarrow backtrack to previous rank if no more unexplored nodes

Optimizations (contributions)

- a longer backtrack
- a smaller ready list

Peak backtrack optimization

Peak backtrack optimization

Peak backtrack optimization

Negative impact optimization

Negative impact optimization

Negative impact optimization

16

Instance size: our Branch and Bound Graph of ≈ 50 nodes always solved in ≤ 1 sec. Time generally explodes if more than 100 nodes, but B&B quickly finds at least one solution.

Instance size: our Branch and Bound Graph of ≈ 50 nodes always solved in ≤ 1 sec. Time generally explodes if more than 100 nodes, but B&B quickly finds at least one solution.

Instance size: all linear extensions ≈ 15 nodes to be solved in ≤ 1 sec.

Instance size: our Branch and Bound Graph of ≈ 50 nodes always solved in ≤ 1 sec. Time generally explodes if more than 100 nodes, but B&B quickly finds at least one solution.

Instance size: all linear extensions ≈ 15 nodes to be solved in ≤ 1 sec.

Important parameter: sort function for ready list Will impact on the peak quality of first DFS.

Experiments

satellite	G	[RWM'95]	[MB'01]	[KLMU'18]	[ours]	sec.
flat SAS	22	1,920	_	1,680	1,680	0.01
SDF	4,515	—	991	960	960	24.5

satellite	G	[RWM'95]	[MB'01]	[KLMU'18]	[ours]	sec.
flat SAS	22	1,920	_	1,680	1,680	0.01
SDF	4,515	—	991	960	960	24.5

Previous runtime for flat SAS [RWM'95]:

4 days (and wrong result) with ILP

satellite	G	[RWM'95]	[MB'01]	[KLMU'18]	[ours]	sec.
flat SAS	22	1,920	_	1,680	1,680	0.01
SDF	4,515	—	991	960	960	24.5

Previous runtime for flat SAS [RWM'95]:

4 days (and wrong result) with ILP

Peaks of [MB'01] and [KLMU'18] are over-estimated.

Memory peak for QMF Filterbank

Filterbank	G	[MB'01]	[KLMU'18]	[ours]	$ G^{C} $	sec.
qmf23_2d	90	22	27	14	1	0.07
qmf23_3d	378	63	81	32	1	0.6
qmf23_5d	5,346	492	709	248	1	445.4
qmf12_2d	40	9	10	7	1	0.02
qmf12_3d	112	16	20	11	1	0.06
qmf12_5d	704	58	79	35	1	1.7
qmf235_2d	250	55	78	24	24	0.3
qmf235_3d	1,750	240	189	47 [†]	285	T/O
qmf235_5d	68,750	5,690	—	3,401 [†]	—	T/O

Gray = Wrong qmf version but similar peaks (always reduced to 1 node on correct version, no T/O)

Conclusion

New peak-preserving transformations

Always compress trees and SP-DAG into a single node, and many more graphs too (at worst quartic time).

New peak-preserving transformations

Always compress trees and SP-DAG into a single node, and many more graphs too (at worst quartic time).

New optimal Branch and Bound

Handle instances up to 50 nodes in a few seconds.

New peak-preserving transformations

Always compress trees and SP-DAG into a single node, and many more graphs too (at worst quartic time).

New optimal Branch and Bound

Handle instances up to 50 nodes in a few seconds.

Future work

- checkpointing a.k.a. rematerialization (a.k.a. reversible PebbleGame?)
- apply same kind of transformations to other problems?

References

- [Sethi'73] Complete Register Allocation Problems, R. Sethi (1973)
 - [KS'74] A structured program to generate all topological sorting arrangements, D. Knuth and J. L. Szwarcfiter (1974)
 - [BW'91] Counting Linear Extensions is #P-Complete, G. Brightwell and P. Winkler (1991)
 - [Liu'87] An Application of Generalized Tree Pebbling to Sparse Matrix Factorization, J. W. H. Liu (1987)
- [KLMU'18] Scheduling series-parallel task graphs to minimize peak memory, E. Kayaaslan, T. Lambert, L. Marchal and B. Uçar (2018)
 - [RWM'95] Scheduling for optimum data memory compaction in block diagram oriented software synthesis, S. Ritz, M. Willems and H. Meyr (1995)
 - [MB'01] Shared buffer implementations of signal processing systems using lifetime analysis techniques, P.K. Murthy and S.S. Bhattacharyya (2001)