

Memory Saving Strategies for Deep Neural Network Training

04/02/2021

Olivier Beaumont, Lionel Eyraud-Dubois, Julien Herrman, Alexis Joly Alena Shilova

- PhD thesis coadvised between 2 teams: HiePACS and Zenith
- Artificial Intelligence is a very popular direction
- Pl@ntNet relies on neural networks
- Their training is time and memory-costly process
- Inference should be cheap
- Scheduling techniques should be applied to optimize both processes
- In my work we have concentrated on solving memory issues

Neural Networks

- Layers (Dense and Convolutional);
- Training and Inference;
- Forward and Backward propagations;
- Batches, Activations and Gradients;
- Weights (layer parameters)

Memory issues

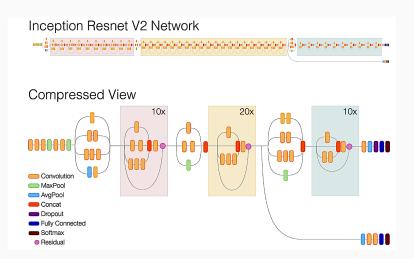
Heavy models

This problem occurs when the weights of the model take a lot of memory space. That causes the problem in inference as well

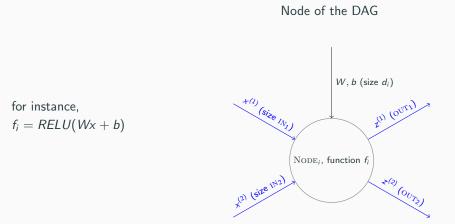
Heavy training

The problem occurs when the activations are too expensive to store, e.g. batch-size or input sample are too big. The problem does not affect inference stage.

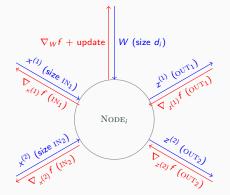
DL training phase: computational DAG



DL training phase: computational DAG



DL: forward propagation and backward propagation



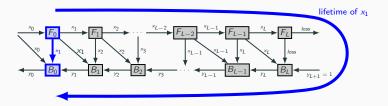
•
$$\frac{\partial f}{\partial x_i^{(1)}} = \frac{\partial f}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial x_i^{(1)}} + \frac{\partial f}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial x_i^{(1)}}$$

• $\frac{\partial f}{\partial W_i} = \frac{\partial f}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial W_i} + \frac{\partial f}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial W_i}$

$$\frac{\partial f}{\partial x_i^{(2)}} = \frac{\partial f}{\partial z^{(1)}} \frac{\partial z^{(1)}}{\partial x_i^{(2)}} + \frac{\partial f}{\partial z^{(2)}} \frac{\partial z^{(2)}}{\partial x_i^{(2)}}$$

Training requires a lot of memory

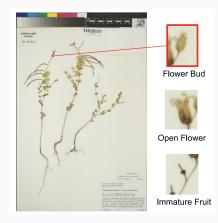
- forward propagation
 - propagate the input through the network to compute loss
- backward propagation
 - · compute gradients with respect to loss
 - update the weights with gradients

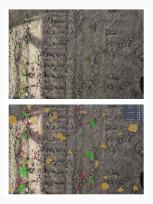


Memory is consumed by storing activations throughout the entire training

Two examples of memory-consuming tasks (PI@ntNet)

Pl@ntNet uses machine learning to identify plant species





(i) Detection & counting of small reproductive structures in digitized herbarium

(ii) Early detection & classification of weeds in precision agriculture

Performance with a state-of-the-art model and largest image size fitting in GPU memory is strongly affected by object's size

Model: Mask R-CNN Image size: 1200×2048 GPU memory: 16Gb Mini-batch size: 1

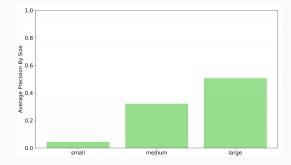


Figure 2: Detection & classification of weeds (performance by object's size)

Memory saving techniques

Special neural networks:

- Memory efficient architectures:
 - Reversible Neural Networks (RevNet)
 - Quantized Neural Networks
 - MobileNets
 - ShuffleNet
- Layer optimization:
 - memory-efficient batch-normalization layer

Usage of several machines:

- Data Parallelism
- Model Parallelism
- Spatial Parallelism

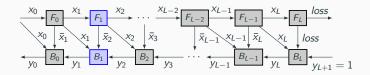
Efficient training on one node/GPU

- Rematerialization:
 - work more and stock less
 - checkpointing strategies
- Offloading:
 - use lower memory hierarchy (training on GPU, activations on CPU)

Pros & Cons

- imposes overhead costs (recomputations or communication delays)
- $+\,$ suitable for training any NN architecture with limited resources
- + could be combined with parallelization strategies

Rematerialization



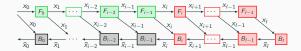
Main idea

To work more and stock less: instead of keeping all activations we want to store some of them and recompute others once we need them.

Analogous to Automatic Differentiation

The optimal schedule can be found with the help of Dynamic Programming

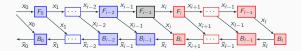
Single Adjoint Chain Computation problem



Input: cost of one forward step u_f , cost of one backward step u_b , chain length ℓ and total memory size c.

$$\begin{aligned} \mathsf{Opt}_0(\ell, 1) &= \frac{\ell(\ell+1)}{2} u_f + (\ell+1) u_b \\ \mathsf{Opt}_0(1, c) &= u_f + 2u_b \\ \mathsf{Opt}_0(\ell, c) &= \min_{1 \le i \le \ell-1} \{ i u_f + \mathsf{Opt}_0(\ell-i, c-1) + \mathsf{Opt}_0(i-1, c) \} \end{aligned}$$

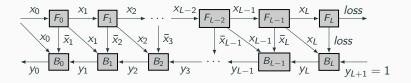
Single Adjoint Chain Computation problem



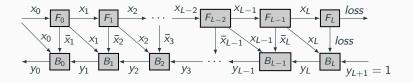
Input: cost of one forward step u_f , cost of one backward step u_b , chain length ℓ and total memory size c.

$$\begin{aligned} \mathsf{Opt}_0(\ell, 1) &= \frac{\ell(\ell+1)}{2} u_f + (\ell+1) u_b \\ \mathsf{Opt}_0(1, c) &= u_f + 2u_b \\ \mathsf{Opt}_0(\ell, c) &= \min_{1 \le i \le \ell-1} \{ i u_f + \mathsf{Opt}_0(\ell-i, c-1) + \mathsf{Opt}_0(i-1, c) \} \end{aligned}$$

DNN frameworks checkpointing



- heterogeneous costs
- extra dependencies (↓-edges)
- different ways of checkpointing: (recording or saving only input)
- new dynamic programming is required
- and it should be suitable for most part of the state-of-the-art models



$$\operatorname{Opt}_{\mathsf{BP}}(i,\ell,m) = \min \begin{cases} \operatorname{Opt}_1(i,\ell,m) \\ \operatorname{Opt}_2(i,\ell,m) \end{cases}$$
(1)

$$Opt_1(i, \ell, m) = \min_{s=i+1,...,\ell} \sum_{k=i}^{s-1} u_f[k] + Opt_{BP}(s, \ell, m - \omega_x^s)$$
$$+ Opt_{BP}(i, s-1, m)$$
$$Opt_2(i, \ell, m) = u_f[i] + Opt_{BP}(i+1, \ell, m - \omega_x^{i+1}) + u_b[i]$$

Formulas are valid when memory constrained are not violated ! 15

Parameter estimation

- measure memory and time costs of operations
- $\bullet \ \hookrightarrow$ do a simulation run with some test sample

Computing optimal sequence

- discretize memory costs for dynamic programming.
- find the schedule with the dynamic programming

Executing training iteration

- apply the schedule to each iteration of the training
- done by a "wrapper" over NN which controls the operation order.

rotor: Rematerializing Optimally with pyTORch

```
import rotor
import torch
```

```
device = torch.device("cuda")
net = rotor.models.resnet18()
net.to(device=device)
net_check = rotor.Checkpointable(net)
shape = (32, 3, 224, 224)
memory = 700*1024*1024
sample = torch.rand(*shape, device=device)
net_check.measure(sample)
net_check.compute_sequence(mem_limit=memory)
```

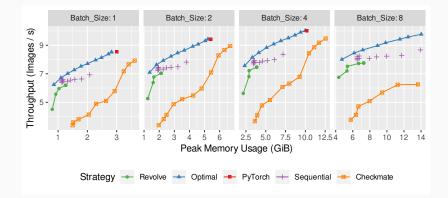
```
#forward and backward with checkpointing
data = torch.rand(*shape, device=device)
data.requires_grad = True
result = net_check(data).sum()
result.backward()
grad = data.grad
```

#create model

#memory budget of 700MB

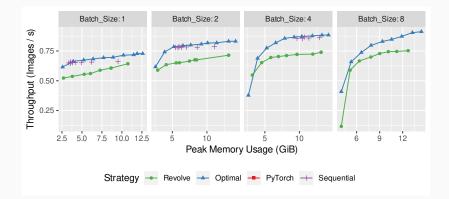
#measure execution costs
#find the schedule

Comparison of our implementation with other approaches i



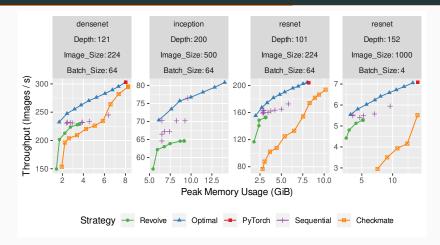
(i) Experimental results for the ResNet network with depth 101 and image size 1000.

Comparison of our implementation with other approaches ii



(ii) Experimental results for the ResNet network with depth 1001 and image size 224.

Comparison of our implementation with other approaches iii



(iii) Experimental results for several situations.

Offloading

vDNN and vDNN++

vDNN[Rhu et al, 2016]

- what activations to offload:
 - offload everything
 - offload only inputs of convolutional layers
- synchronizes each forward step with the corresponding offloading
- prefetching is done synchronously but as soon as possible

vDNN++[Shriram et al, 2019]

Improvements:

- stream_{empon}
 FP1
 FP2

 BPs
 BPs1

 stream_{empon}
 Offload1
 Offload2

 Prefetchs2
 Prefetchs3

- offloading is performed asynchronously with the forward steps
- solving memory fragmentation issues on the GPU
- decreasing memory needs at CPU by using compression

TFLMS[Tung D Le et al, 2018]

- a module in TensorFlow
- rewrite the computational graph of a neural network
- using swap-in and swap-out operations
- offloading decision is based on distances between nodes

AutoSwap[Zhang et al, 2019]

- CUDA based implementation
- using swap-in and swap-out operations
- decision is based on assigned priority scores
- bayesian optimization is used to optimize the priority scores

Our model

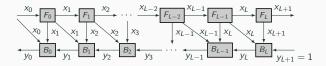


Figure 4: Data dependencies during the training phase of Sequential DNNs.

Problem

We are given

- an adjoint chain with L operations with known
 - processing times $u_f[i]$ and $u_b[i]$
 - data sizes $|x_i|$ and $|y_i|$
- a processing device with memory $\textit{M}_{\rm GPU} < \infty$
- a main memory with memory $M_{
 m CPU}=\infty$
- a network connecting both devices with bandwidth β

Can we execute the given chain on the given platform within time T?

Main problem

- activations are offloaded entirely
- they are discarded only after the offloading is complete

Fractional communications

- activations are offloaded entirely
- already offloaded part of an activation can be immediately discarded

Fractional relaxation

- activations can be offloaded partially
- already offloaded part of an activation can be immediately discarded

Our contribution

Main problem [NP complete in the strong sense]

- activations are offloaded entirely
- they are discarded only after the offloading is complete

Fractional communications

- activations are offloaded entirely
- already offloaded part of an activation can be immediately discarded

Fractional relaxation

- activations can be offloaded partially
- already offloaded part of an activation can be immediately discarded

Our contribution

Main problem [NP complete in the strong sense]

- activations are offloaded entirely
- they are discarded only after the offloading is complete

Fractional communications [NP complete in the weak sense]

- activations are offloaded entirely
- already offloaded part of an activation can be immediately discarded **Solution:** Dynamic Programming

Fractional relaxation

- · activations can be offloaded partially
- · already offloaded part of an activation can be immediately discarded

Our contribution

Main problem [NP complete in the strong sense]

- activations are offloaded entirely
- they are discarded only after the offloading is complete

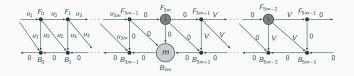
Fractional communications [NP complete in the weak sense]

- activations are offloaded entirely
- already offloaded part of an activation can be immediately discarded **Solution:** Dynamic Programming

Fractional relaxation [Polynomial]

- activations can be offloaded partially
- already offloaded part of an activation can be immediately discarded **Solution:** Greedy algorithm

Main Problem: NP-completeness in the strong sense

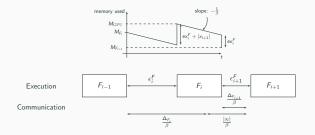


•
$$L = 5m$$
, $\beta = V$, $M_{\rm GPU} = mV$, $T = 2m$;

•
$$u_f[i] = 0$$
 and $|x_i| = u_i$ for $1 \le i < 3m$;

- $u_f[i] = 1$ and $|x_i| = 0$ for $i = 3m + 2k, 0 \le k < m$;
- $u_f[i] = 0$ and $|x_i| = V$ for $i = 3m + 2k + 1, 0 \le k < m$;
- $u_b[i] = 0$ and $|y_i| = 0$ for all i, except $u_b[3m] = m$.

Fractional communications

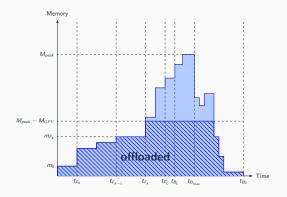


• find
$$\epsilon_i^F$$
 using $\epsilon_i^F = \max\left(0, \frac{M_{F_i} + \exp^F_i + |x_{i+1}| - M_{\text{GPU}}}{\beta}\right)$

- update $M_{F_{i+1}}$ and $\Delta_{F_{i+1}}$
- find total idle time starting from F_0 , taking the decision layer by layer
- keep track of all decisions and eliminate invalid ones
- symmetrical for the backward phase

Fractional relaxation

Greedy algorithm finds a solution in this case



The schedule is

- no-wait
- eager
- ordered
- offloading $M_{peak} M_{
 m GPU}$ data

no-wait - perform operations ASAPeager - offload first activationsordered - offload in increasing order of indices

Results

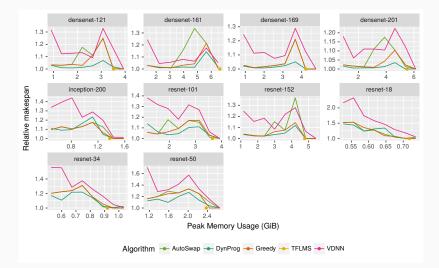


Figure 5: Experimental results (image size 224 and batch size 32). The plots show the ratio of the makespan to the lower bound $LB = \max(\sum_{i} u_{f}[i] + u_{b}[i], 2\frac{M_{peak} - M_{GPU}}{\beta})$

Results

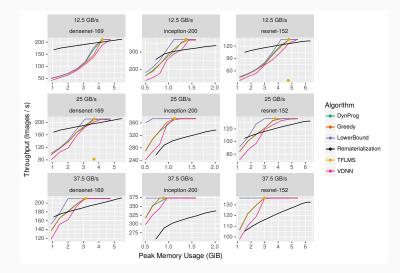


Figure 6: Offloading vs Rematerialization (image size 224 and batch size 32). Lower bound is defined with $LB = \max(\sum_{i} u_{f}[i] + u_{b}[i], 2\frac{M_{peak} - M_{GPU}}{\beta})$

Conclusion

- It is important to reduce memory consumption
- Storing activations could be more expensive than storing weights
- Rematerialization is an efficient way to store less activations $(2|x_i|/\beta \ge u_f[i] + u_b[i])$
- Offloading is an efficient way to store less activations (2|x_i|/β ≤ u_f[i] + u_b[i])
- Our solutions outperform the state of the art techniques

What next?

- combine Offloading with Rematerialization
- combine them with parallelization techniques
- apply these techniques on real use-cases (Pl@ntNet)

Thank you for the attention !