
Memory Saving Strategies for Deep Neural

Network Training

04/02/2021

Olivier Beaumont, Lionel Eyraud-Dubois, Julien Herrman, Alexis Joly

Alena Shilova

Introduction

• PhD thesis coadvised between 2 teams: HiePACS and Zenith

• Artificial Intelligence is a very popular direction

• Pl@ntNet relies on neural networks

• Their training is time and memory-costly process

• Inference should be cheap

• Scheduling techniques should be applied to optimize both processes

• In my work we have concentrated on solving memory issues

1

Key words

Neural Networks

• Layers (Dense and Convolutional);

• Training and Inference;

• Forward and Backward propagations;

• Batches, Activations and Gradients;

• Weights (layer parameters)

2

Memory issues

Source of memory problems

Heavy models
This problem occurs when the weights of the model take a lot of memory

space. That causes the problem in inference as well

Heavy training
The problem occurs when the activations are too expensive to store,

e.g. batch-size or input sample are too big. The problem does not affect

inference stage.

3

DL training phase: computational DAG

4

DL training phase: computational DAG

for instance,

fi = RELU(Wx + b)

Node of the DAG

Nodei , function fi

x (1)
(size in

1)

W , b (size di)

x
(2) (si

ze in2)

z
(1) (o

ut1)

z (2)
(out

2)

5

DL: forward propagation and backward propagation

Nodei

W (size di)

x (1)
(size in

1)

x
(2) (si

ze in2)

z
(1) (o

ut1)

z (2)
(out

2)

∇ z
(1)
f (o

ut1)

∇
z (2) f (out

2)

∇
x (1) f (in

1)

∇ x
(2)
f (in

2)

∇W f + update

• ∂f

∂x
(1)
i

= ∂f
∂z(1)

∂z(1)

∂x
(1)
i

+ ∂f
∂z(2)

∂z(2)

∂x
(1)
i

∂f

∂x
(2)
i

= ∂f
∂z(1)

∂z(1)

∂x
(2)
i

+ ∂f
∂z(2)

∂z(2)

∂x
(2)
i

• ∂f
∂Wi

= ∂f
∂z(1)

∂z(1)

∂Wi
+ ∂f

∂z(2)
∂z(2)

∂Wi

6

Training requires a lot of memory

• forward propagation

• propagate the input through the network to compute loss

• backward propagation

• compute gradients with respect to loss

• update the weights with gradients

lifetime of x1

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2
xL−2 xL−1 xL loss

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx1 x2
x3 xL−1

xL loss

Memory is consumed by storing activations throughout the entire

training

7

Two examples of memory-consuming tasks (Pl@ntNet)

Pl@ntNet uses machine learning to identify plant species

(i) Detection & counting of small

reproductive structures in digitized

herbarium

(ii) Early detection & classification of

weeds in precision agriculture

8

Two examples of memory-consuming tasks (Pl@ntNet)

Performance with a state-of-the-art model and largest image size

fitting in GPU memory is strongly affected by object’s size

Model: Mask R-CNN

Image size: 1200x2048

GPU memory: 16Gb

Mini-batch size: 1

Figure 2: Detection & classification of weeds

(performance by object’s size)

9

Memory saving techniques

Special neural networks:

• Memory efficient architectures:

• Reversible Neural Networks (RevNet)

• Quantized Neural Networks

• MobileNets

• ShuffleNet

• Layer optimization:

• memory-efficient batch-normalization layer

Usage of several machines:

• Data Parallelism

• Model Parallelism

• Spatial Parallelism

10

Memory saving techniques

Efficient training on one node/GPU

• Rematerialization:

• work more and stock less

• checkpointing strategies

• Offloading:

• use lower memory hierarchy (training on GPU, activations on CPU)

Pros & Cons

− imposes overhead costs (recomputations or communication delays)

+ suitable for training any NN architecture with limited resources

+ could be combined with parallelization strategies

11

Rematerialization

Rematerialization

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2 xL−2 xL−1 xL loss

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx̄1 x̄2 x̄3 x̄L−1 x̄L loss

Main idea
To work more and stock less: instead of keeping all activations we want

to store some of them and recompute others once we need them.

Analogous to Automatic Differentiation
The optimal schedule can be found with the help of Dynamic

Programming

12

Single Adjoint Chain Computation problem

F0 · · · Fi−2 Fi−1 Fi · · · Fl−1

B0 · · · Bi−2 Bi−1 Bi · · · Bl−1 Bl

x0 x1 xi−2 xi−1 xi xi+1 xl−1

xl

x̄lx̄l−1x̄i+1x̄ix̄i−1x̄i−2x̄1x̄0

x0 x1 xi−2 xi−1 xi xi+1 xl−1

Input: cost of one forward step uf , cost of one backward step ub, chain

length ` and total memory size c .

Opt0(`, 1) =
`(`+ 1)

2
uf + (`+ 1)ub

Opt0(1, c) = uf + 2ub

Opt0(`, c) = min
1≤i≤`−1

{iuf + Opt0(`− i , c − 1) + Opt0(i − 1, c)}

13

Single Adjoint Chain Computation problem

F0 · · · Fi−2 Fi−1 Fi · · · Fl−1

B0 · · · Bi−2 Bi−1 Bi · · · Bl−1 Bl

x0 x1 xi−2 xi−1 xi xi+1 xl−1

xl

x̄lx̄l−1x̄i+1x̄ix̄i−1x̄i−2x̄1x̄0

x0 x1 xi−2 xi−1 xi xi+1 xl−1

Input: cost of one forward step uf , cost of one backward step ub, chain

length ` and total memory size c .

Opt0(`, 1) =
`(`+ 1)

2
uf + (`+ 1)ub

Opt0(1, c) = uf + 2ub

Opt0(`, c) = min
1≤i≤`−1

{iuf + Opt0(`− i , c − 1) + Opt0(i − 1, c)}

13

DNN frameworks checkpointing

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2 xL−2 xL−1 xL loss

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx̄1 x̄2 x̄3 x̄L−1 x̄L loss

• heterogeneous costs

• extra dependencies (↓-edges)

• different ways of checkpointing: (recording or saving only input)

• new dynamic programming is required

• and it should be suitable for most part of the state-of-the-art models

14

Optimal checkpointing for general sequential models

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2 xL−2 xL−1 xL loss

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx̄1 x̄2 x̄3 x̄L−1 x̄L loss

OptBP (i , `,m) = min

{
Opt1(i , `,m)

Opt2(i , `,m)
(1)

Opt1(i , `,m) = min
s=i+1,...,`

s−1∑
k=i

uf [k] + OptBP (s, `,m − ωs
x)

+ OptBP (i , s − 1,m)

Opt2(i , `,m) = uf [i] + OptBP

(
i + 1, `,m − ωi+1

x̄

)
+ ub[i]

Formulas are valid when memory constrained are not violated ! 15

Implementation in PyTorch

Parameter estimation

• measure memory and time costs of operations

• ↪→ do a simulation run with some test sample

Computing optimal sequence

• discretize memory costs for dynamic programming.

• find the schedule with the dynamic programming

Executing training iteration

• apply the schedule to each iteration of the training

• done by a ”wrapper” over NN which controls the operation order.

16

rotor: Rematerializing Optimally with pyTORch

import rotor

import torch

device = torch.device("cuda")

net = rotor.models.resnet18()

net.to(device=device)

net_check = rotor.Checkpointable(net) #create model

shape = (32, 3, 224, 224)

memory = 700*1024*1024 #memory budget of 700MB

sample = torch.rand(*shape, device=device)

net_check.measure(sample) #measure execution costs

net_check.compute_sequence(mem_limit=memory) #find the schedule

#forward and backward with checkpointing

data = torch.rand(*shape, device=device)

data.requires_grad = True

result = net_check(data).sum()

result.backward()

grad = data.grad

17

Comparison of our implementation with other approaches i

Batch_Size: 1 Batch_Size: 2 Batch_Size: 4 Batch_Size: 8

1 2 3 1 2 3 4 5 6 2.5 5.0 7.5 10.0 12.54 6 8 10 12 14

5

7

9

Peak Memory Usage (GiB)

T
h
ro

u
g
h
p
u
t
(I

m
a
g
e
s

/
s)

Strategy Revolve Optimal PyTorch Sequential Checkmate

(i) Experimental results for the ResNet network with depth 101 and image size

1000.

18

Comparison of our implementation with other approaches ii

Batch_Size: 1 Batch_Size: 2 Batch_Size: 4 Batch_Size: 8

2.5 5.0 7.5 10.0 12.5 5 10 5 10 6 9 12

0.25

0.50

0.75

Peak Memory Usage (GiB)

T
h
ro

u
g
h
p
u
t
(I

m
a
g
e
s

/
s)

Strategy Revolve Optimal PyTorch Sequential

(ii) Experimental results for the ResNet network with depth 1001 and image

size 224.

19

Comparison of our implementation with other approaches iii

densenet

Depth: 121

Image_Size: 224

Batch_Size: 64

inception

Depth: 200

Image_Size: 500

Batch_Size: 64

resnet

Depth: 101

Image_Size: 224

Batch_Size: 64

resnet

Depth: 152

Image_Size: 1000

Batch_Size: 4

2 4 6 8 5.0 7.5 10.0 12.5 2.5 5.0 7.5 10.0 5 10

3

4

5

6

7

80

120

160

200

60

65

70

75

80

150

200

250

300

Peak Memory Usage (GiB)

T
h
ro

u
g
h
p
u
t
(I

m
a
g
e
s

/
s)

Strategy Revolve Optimal PyTorch Sequential Checkmate

(iii) Experimental results for several situations.

20

Offloading

vDNN and vDNN++

vDNN[Rhu et al, 2016]

• what activations to offload:

• offload everything

• offload only inputs of convolutional layers

• synchronizes each forward step with the corresponding offloading

• prefetching is done synchronously but as soon as possible

vDNN++[Shriram et al, 2019]

Improvements:

• offloading is performed asynchronously with the forward steps

• solving memory fragmentation issues on the GPU

• decreasing memory needs at CPU by using compression

21

Other approaches

TFLMS[Tung D Le et al, 2018]

• a module in TensorFlow

• rewrite the computational graph of a neural network

• using swap-in and swap-out operations

• offloading decision is based on distances between nodes

AutoSwap[Zhang et al, 2019]

• CUDA based implementation

• using swap-in and swap-out operations

• decision is based on assigned priority scores

• bayesian optimization is used to optimize the priority scores

22

Our model

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2 xL−2 xL−1 xL xL+1

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx1 x2 x3 xL−1 xL xL+1

Figure 4: Data dependencies during the training phase of Sequential DNNs.

Problem
We are given

• an adjoint chain with L operations with known

• processing times uf [i] and ub[i]

• data sizes |xi | and |yi |

• a processing device with memory MGPU <∞
• a main memory with memory MCPU =∞
• a network connecting both devices with bandwidth β

Can we execute the given chain on the given platform within time T?

23

Our contribution

Main problem

[NP complete in the strong sense]

• activations are offloaded entirely

• they are discarded only after the offloading is complete

Fractional communications

[NP complete in the weak sense]

• activations are offloaded entirely

• already offloaded part of an activation can be immediately discarded

Solution: Dynamic Programming

Fractional relaxation

[Polynomial]

• activations can be offloaded partially

• already offloaded part of an activation can be immediately discarded

Solution: Greedy algorithm

24

Our contribution

Main problem [NP complete in the strong sense]

• activations are offloaded entirely

• they are discarded only after the offloading is complete

Fractional communications

[NP complete in the weak sense]

• activations are offloaded entirely

• already offloaded part of an activation can be immediately discarded

Solution: Dynamic Programming

Fractional relaxation

[Polynomial]

• activations can be offloaded partially

• already offloaded part of an activation can be immediately discarded

Solution: Greedy algorithm

24

Our contribution

Main problem [NP complete in the strong sense]

• activations are offloaded entirely

• they are discarded only after the offloading is complete

Fractional communications [NP complete in the weak sense]

• activations are offloaded entirely

• already offloaded part of an activation can be immediately discarded

Solution: Dynamic Programming

Fractional relaxation

[Polynomial]

• activations can be offloaded partially

• already offloaded part of an activation can be immediately discarded

Solution: Greedy algorithm

24

Our contribution

Main problem [NP complete in the strong sense]

• activations are offloaded entirely

• they are discarded only after the offloading is complete

Fractional communications [NP complete in the weak sense]

• activations are offloaded entirely

• already offloaded part of an activation can be immediately discarded

Solution: Dynamic Programming

Fractional relaxation [Polynomial]

• activations can be offloaded partially

• already offloaded part of an activation can be immediately discarded

Solution: Greedy algorithm

24

Main Problem: NP-completeness in the strong sense

F0 F1
· · ·

F3m−1

1

F3m F3m+1

· · · 1

F5m−2 F5m−1

B0 B1

· · ·
B3m−1

m

B3m

B3m+1

· · ·
B5m−2 B5m−1

u1 u2 u3 u3m 0 0 V 0 V 0

0000000000

u1 u2 u3 u3m
0

0 V 0 Vu2 u3 0 0 V V 0

• L = 5m, β = V , MGPU = mV , T = 2m;

• uf [i] = 0 and |xi | = ui for 1 ≤ i < 3m;

• uf [i] = 1 and |xi | = 0 for i = 3m + 2k , 0 ≤ k < m;

• uf [i] = 0 and |xi | = V for i = 3m + 2k + 1, 0 ≤ k < m;

• ub[i] = 0 and |yi | = 0 for all i , except ub[3m] = m.

25

Fractional communications

FiFi−1 Fi+1Execution

Communication

t

memory used

MFi

MGPU

MFi+1

slope: − 1
β

exFi
exFi + |xi+1|

εFi εFi+1

∆Fi

β

|xi |
β

∆Fi+1

β

• find εFi using εFi = max
(

0,
MFi

+exFi +|xi+1|−MGPU

β

)
• update MFi+1 and ∆Fi+1

• find total idle time starting from F0, taking the decision layer by layer

• keep track of all decisions and eliminate invalid ones

• symmetrical for the backward phase

26

Fractional relaxation

Greedy algorithm finds a solution in this case

Memory

Time

offloaded

tF0 tFk−1 tFk tFL tBL tBimax
tB0

m0

mFk

Mpeak

Mpeak −MGPU

The schedule is

• no-wait

• eager

• ordered

• offloading

Mpeak −MGPU data

no-wait - perform operations ASAP

eager - offload first activations

ordered - offload in increasing order of indices 27

Results

resnet-34 resnet-50

inception-200 resnet-101 resnet-152 resnet-18

densenet-121 densenet-161 densenet-169 densenet-201

0.6 0.7 0.8 0.9 1.0 1.2 1.6 2.0 2.4

0.8 1.2 1.6 2 3 4 1 2 3 4 5 0.55 0.60 0.65 0.70

1 2 3 4 2 3 4 5 6 1 2 3 4 2 4 6
1.00
1.05
1.10
1.15
1.20

1.0

1.5

2.0

1.0

1.1

1.2

1.3

1.0

1.1

1.2

1.3

1.0

1.1

1.2

1.3

1.0
1.1
1.2
1.3
1.4

1.0

1.2

1.4

1.6

1.0

1.1

1.2

1.3

1.0
1.1
1.2
1.3
1.4

1.0

1.2

1.4

Peak Memory Usage (GiB)

R
el

at
iv

e
m

ak
es

pa
n

Algorithm AutoSwap DynProg Greedy TFLMS VDNN

Figure 5: Experimental results (image size 224 and batch size 32).

The plots show the ratio of the makespan to the lower bound

LB = max(
∑

i uf [i] + ub[i], 2
Mpeak−MGPU

β
) 28

Results

37.5 GB/s

densenet-169

37.5 GB/s

inception-200

37.5 GB/s

resnet-152

25 GB/s

densenet-169

25 GB/s

inception-200

25 GB/s

resnet-152

12.5 GB/s

densenet-169

12.5 GB/s

inception-200

12.5 GB/s

resnet-152

1 2 3 4 5 0.5 1.0 1.5 2.0 1 2 3 4 5 6

1 2 3 4 5 0.5 1.0 1.5 2.0 1 2 3 4 5 6

1 2 3 4 5 0.5 1.0 1.5 2.0 1 2 3 4 5 6

60

90

120

80

100

120

100

110

120

130

200

300

240

280

320

360

275
300
325
350
375

50

100

150

200

80

120

160

200

120
140
160
180
200

Peak Memory Usage (GiB)

Th
ro

ug
hp

ut
 (I

m
ag

es
 /

s) Algorithm
DynProg

Greedy

LowerBound

Rematerialization

TFLMS

VDNN

Figure 6: Offloading vs Rematerialization (image size 224 and batch size 32).

Lower bound is defined with LB = max(
∑

i uf [i] + ub[i], 2
Mpeak−MGPU

β
)

29

Conclusion

• It is important to reduce memory consumption

• Storing activations could be more expensive than storing weights

• Rematerialization is an efficient way to store less activations

(2|xi |/β ≥ uf [i] + ub[i])

• Offloading is an efficient way to store less activations

(2|xi |/β ≤ uf [i] + ub[i])

• Our solutions outperform the state of the art techniques

What next?

• combine Offloading with Rematerialization

• combine them with parallelization techniques

• apply these techniques on real use-cases (Pl@ntNet)

30

The end

Thank you for the attention !

31

	Memory issues
	Rematerialization
	Offloading

