

Low rank matrix computing : performance, algorithms and tools *GT TOPAL 11/23*

22 juin 2023

Abel Calluaud ^{1,2} Mathieu Faverge ² Pierre Ramet ²

¹CEA ²UNIV. BORDEAUX, CNRS, BORDEAUX INP, INRIA, LABRI, UMR 5800

Table of content

Problem statement

State-of-the-art algorithms and tools

Roadmap for \mathcal{H} -Chameleon

Low Rank Algebra Package : RAPACK

Future work

9/11/2023

2

Problem statement

Objective

Design <u>scalable</u> high-performant portable direct solver.

- ... but dense direct solver are costly.
 - > $O(n^3)$ operations
 - $> O(n^2)$ memory
- \rightarrow Parallel computing
- ightarrow Low rank compression

Target applications

- Electromagnetic scaterring
- Climate modeling
- Earthquake simulation

Target architectures

Modern supercomputers featuring multicore/manycore CPUs and GPUs.

State-of-the-art dense direct solver

Panel vs tile algorithms

SLATE : fork-join DPLASMA : fine deps CHAMELEON : fine deps GPU

Figure 1: Panel vs tile algorithms

Tile algorithm and task paradigm allow:

- > unleash fine task parallelism
- > use highly-optimized linear algebra libraries on local tile data.
- leverage runtime optimizations > 9/11/2023

State-of-the-art low rank solver

Design a scalable direct solver

Objective

Design a scalable direct solver for dense linear algebra with low rank compression.

Building blocks

- > Scalable asynchronous tasking engine
- > Fine-grain computation decomposition
- > Tile Algorithm
- > Low rank kernels

Low rank matrix computing :performance, algorithms and tools - Abel Calluaud

Design a scalable direct solver

Objective

Design a scalable direct solver for dense linear algebra with low rank compression.

Building blocks

- > Scalable asynchronous tasking engine : StarPU
- > Fine-grain computation decomposition : StarPU's hierarchical tasks
- > Tile Algorithm : CHAMELEON
- > Low Rank kernels : PasTiX's kernels

Roadmap

Objective

Design a scalable direct solver for dense linear algebra with low rank compression.

Roadmap

- ✓ Design Low Rank Algebra kernels : extract kernel from pastix and expose them as a BLAS-like library.
- Leverage low rank algebra kernels in PaStiX sparse direct solver.
- □ Add support to Chameleon for RAPACK block tiles.
- □ Add suport to Chameleon for hierarchical tiles.
- □ Leverage fine grain dependencies with StarPU's hierarchical tasks.

Low rank approximation

Figure 2: Low rank approximation

- > Representation of a matrix B with a lower rank matrix.
- > Storage as a outer product $U_B \times V_B^T$.
- > Decomposition can be obtained via SVD, QR variants or Adaptive Cross Approximation (ACA).
- \Rightarrow Reduce storage and computation cost

RAPACK : Low Rank Algebra Package

RAPACK: a low rank linear algebra package.

Objective

Expose low rank linear algebra routines.

Strategy

- > Leverage existing linear algebra kernels from BLAS / LAPACK libraries, and PAStiX.
- > Expose sequential low rank algebra kernels with a C BLAS-like API.
- > A basic interface and an advanced interface allowing to configure compression algorithm, synchronization hooks and memory allocation.

Case study : Low Rank Matrix Multiplication (LRMM)

 $\pmb{C} \leftarrow \pmb{C} + \pmb{A} imes \pmb{B}$

where A, B, and C can either be dense or low rank matrices.

Difficulties

- $> 2^3$ cases to handle
- > Acquiring the data on C may be postponed until the end of the $A \times B$ computation.

Design choices

- > Provide library hooks allowing users to attach synchronization routines when acquiring and releasing data.
- > This is part of the advanced interface available via rapack context structure.

Low rank matrix computing :performance, algorithms and tools - Abel Calluaud

Recompresssion kernel

A low rank matrix $U_C V_C^t$ receive a low rank contribution $U_{AB} V_{AB}^t$

Recompression algorithm

$$U_{C}V_{C}^{t} + U_{AB}V_{AB}^{t} = ([U_{C}, U_{AB}]) \times ([V_{C}, V_{AB}])^{t}$$

Recompression kernels available in RAPACK : SVD, QRCP, RQRCP, TQRCP, RQRRT

9/11/2023

Low rank matrix computing :performance, algorithms and tools - Abel Calluaud

12

Recompresssion kernel

A low rank matrix $U_C V_C^t$ receive a low rank contribution $U_{AB} V_{AB}^t$

Recompression algorithm

$$U_{C}V_{C}^{t} + U_{AB}V_{AB}^{t} = ([U_{C}, U_{AB}]) \times ([V_{C}, V_{AB}])^{t}$$

Recompression kernels available in RAPACK : SVD, QRCP, RQRCP, TQRCP, RQRRT

9/11/2023

Low rank matrix computing :performance, algorithms and tools - Abel Calluaud

12

Recompresssion kernel

A low rank matrix $U_C V_C^t$ receive a low rank contribution $U_{AB} V_{AB}^t$

Recompression algorithm

$$U_{C}V_{C}^{t} + U_{AB}V_{AB}^{t} = ([U_{C}, U_{AB}]) \times ([V_{C}, V_{AB}])^{t}$$

Recompression kernels available in RAPACK : SVD, QRCP, RQRCP, TQRCP, RQRRT

9/11/2023

Conclusion

- > State-of-the-art of low rank solver design
- > RAPACK : a Low Rank algebra library
- > Use in the PaStiX sparse direct solver

Future work :

> Use in the Chameleon dense direct solver with low rank tiles.