Low rank matrix computing: performance, algorithms and tools

GT TOPAL 11/23

22 juin 2023

Abel Calluaud 1,2 Mathieu Faverge 2 Pierre Ramet 2

1CEA
2UNIV. BORDEAUX, CNRS, BORDEAUX INP, INRIA, LABRI, UMR 5800
Table of content

Problem statement

State-of-the-art algorithms and tools

Roadmap for H-Chameleon

Low Rank Algebra Package : RAPACK

Future work
Problem statement

Objective
Design scalable high-performant portable direct solver.
... but dense direct solvers are costly.
> $O(n^3)$ operations
> $O(n^2)$ memory
→ Parallel computing
→ Low rank compression

Target applications
Electromagnetic scattering
Climate modeling
Earthquake simulation

Target architectures
Modern supercomputers featuring multicore/manycore CPUs and GPUs.
State-of-the-art dense direct solver

SLATE: fork-join

DPLASMA: fine deps

CHAMELEON: fine deps, GPU

Figure 1: Panel vs tile algorithms

Tile algorithm and task paradigm allow:

- unleash **fine** task parallelism
- use **highly-optimized** linear algebra libraries on **local** tile data.
- leverage **runtime optimizations**
State-of-the-art low rank solver

HICMA : BLR fine deps
LORAP0 : BLR fine deps
H2lib : \mathcal{H} sequential
HMAT-OSS : \mathcal{H} sequential
hlib : \mathcal{H} parallel proprietary
STRUMPACK : \mathcal{H}SS open-source fork-join distributed
HATRIX-DTD : \mathcal{H}SS fine deps distributed
Arlène : Tile-\mathcal{H} proprietary distributed
\mathcal{H}-CHAMELEON : open-source distributed Tile-\mathcal{H} coarse deps

→ Next \mathcal{H}-Chameleon ? open-source distributed Tile-\mathcal{H} fine deps
Design a scalable direct solver

Objective
Design a scalable direct solver for dense linear algebra with low rank compression.

Building blocks
- Scalable asynchronous tasking engine
- Fine-grain computation decomposition
- Tile Algorithm
- Low rank kernels
Design a scalable direct solver

Objective
Design a scalable direct solver for dense linear algebra with low rank compression.

Building blocks

> Scalable asynchronous tasking engine: StarPU
> Fine-grain computation decomposition: StarPU’s hierarchical tasks
> Tile Algorithm: CHAMELEON
> Low Rank kernels: PasTiX’s kernels
Roadmap

Objective
Design a scalable direct solver for dense linear algebra with low rank compression.

Roadmap
✓ Design Low Rank Algebra kernels: extract kernel from pastix and expose them as a BLAS-like library.
✓ Leverage low rank algebra kernels in PaStiX sparse direct solver.
☐ Add support to Chameleon for RAPACK block tiles.
☐ Add support to Chameleon for hierarchical tiles.
☐ Leverage fine grain dependencies with StarPU's hierarchical tasks.
Low rank approximation

> Representation of a matrix B with a lower rank matrix.
> Storage as a outer product $U_B \times V_B^T$.
> Decomposition can be obtained via SVD, QR variants or Adaptive Cross Approximation (ACA).

\Rightarrow Reduce storage and computation cost
RAPACK: a low rank linear algebra package.

Objective
Exposé low rank linear algebra routines.

Strategy

> Leverage existing linear algebra kernels from BLAS / LAPACK libraries, and PASTiX.

> Expose sequential low rank algebra kernels with a C BLAS-like API.

> A basic interface and an advanced interface allowing to configure compression algorithm, synchronization hooks and memory allocation.
Case study: Low Rank Matrix Multiplication (LRMM)

\[C \leftarrow C + A \times B \]

where \(A, B, \) and \(C \) can either be dense or low rank matrices.

Difficulties

- \(2^3 \) cases to handle
- Acquiring the data on \(C \) may be postponed until the end of the \(A \times B \) computation.

Design choices

- Provide library hooks allowing users to attach synchronization routines when acquiring and releasing data.
- This is part of the advanced interface available via rapack context structure.
Recompresssion kernel

A low rank matrix $U_C V_C^t$ receive a low rank contribution $U_{AB} V_{AB}^t$

Recompression algorithm

$$U_C V_C^t + U_{AB} V_{AB}^t = ([U_C, U_{AB}]) \times ([V_C, V_{AB}])^t$$

Recompression kernels available in RAPACK: SVD, QRCP, RQRCP, TQRCP, RQRRT
Recompression kernel

A low rank matrix $U_C V_C^t$ receive a low rank contribution $U_{AB} V_{AB}^t$

Recompression algorithm

$U_C V_C^t + U_{AB} V_{AB}^t = ([U_C, U_{AB}]) \times ([V_C, V_{AB}])^t$

Recompression kernels available in RAPACK: SVD, QRCP, RQRCP, TQRCP, RQRRT
Recompresssion kernel

A low rank matrix \(U_C V_C^t \) receive a low rank contribution \(U_{AB} V_{AB}^t \)

Recompression algorithm

\[
U_C V_C^t + U_{AB} V_{AB}^t = ([U_C, U_{AB}]) \times ([V_C, V_{AB}])^t
\]

Recompression kernels available in RAPACK: SVD, QRCP, RQRCP, TQRCP, RQRRT
Conclusion

> State-of-the-art of low rank solver design
> RAPACK : a Low Rank algebra library
> Use in the PaStiX sparse direct solver

Future work :
> Use in the Chameleon dense direct solver with low rank tiles.