
1/ 14

Combined runtime system and compiler
techniques for direct hierarchical solver

Abel Calluaud

Mathieu Faverge

Pierre Ramet
David Lugato



2/ 14

Table of contents

1 Introduction

2 Low-rank formats

3 High-performance H-matrix solver

4 Challenges and research directions



3/ 14

Industrial problem

Figure: Electric currents at the
surface of an UAV at 2.5 GHz
(AGK+19)

linear system Ax = b
arising from Maxwell
equations.

Industrial cases can feature
millions of unknowns and
thousands of right-hand
sides.

Direct dense factorization
has O(n3) complexity and
O(n2) storage cost.

→ Compression techniques
for addressing theses
cases



4/ 14

Low-rank approximations

A low-rank approximation consist representing a matrix Am×n

by a lower-rank one.

Can be stored in outer-product form Un,r × V t
r ,m.

low-rank approximation can be calculated with SVD or QR
variants or ACA.

→ memory and compute cost of operation can be reduced



5/ 14

Block Low Rank format

Figure: Block Low Rank Format

flat partition



6/ 14

Hierarchical format

Figure: Hierarchical Format

hierarchical partition



7/ 14

Implementation of a H-matrix solver

The current high-performance implementation is mainly based on
two building blocks:

High performance low-rank kernels leveraging BLAS routines.

libtask, a dedicated task-based runtime system for
communication and distributed memory parallelization.



8/ 14

Libtask

A dedicated task-based runtime system based on STF model.

Take avantage of hierarchical dependencies to unleash the
maximum parallelism.

Figure: Panel update where AH and CH are H-matrices and BRk is a Rk
matrix (H-POTRF(AH); H-TRSM(AH, BRk); H-TRSM(AH, CH);)



9/ 14

Strong scalability

Figure: Strong scalability for sphere
geometries up to 4.4 million
unknowns over KNLs
(TERA1000-2)

Figure: Strong scalability for sphere
geometries up to 1.6 million
unknowns over Haswell processors
(TERA1000-1)



10/ 14

Challenges for an efficient implementation

Several HPC challenges arise from the hierarchical nature of the
data structure :

Load balancing

Data locality

Task overhead

Difficult to leverage GPU architectures due to the irregular
and sparse data structure.



11/ 14

Compromise on task-granularity

task granularity load balancing task overhead

fine-grains task ✓ X

good-grain task ? ✓ ✓
coarse-grain tasks X ✓

Task

overhead includes task creation and management, scheduling,
communications, synchronizations.

→ A key issue for porting the H-matrix solver on the GPUs
? A room of improvement for CPUs ?



12/ 14

Optimizing the task graph

Figure: H-matrix and corresponding DAG for H-matrix factorization

Problems:

The task graph is huge and does not fit in memory

The matrix ranks evolve : it is not possible to build the task
graph before.



13/ 14

Combined runtime and compiler techniques

Inspector-Executor. Inspection of the data structure in order
to collect information for improving execution performances.

Multiversioning. Generate multiple version of a kernel at
compile-time. The decision to chose the actual version to run
is done at run-time.

Specialization. Generate a specialized kernel version for a
given parameter.

Autotuning. Exploring a search space of kernels to find the
better performing one.



14/ 14

References I

[AGK+19] Cédric Augonnet, David Goudin, Matthieu Kuhn,
Xavier Lacoste, Raymond Namyst, and Pierre Ramet, A
hierarchical fast direct solver for distributed memory
machines with manycore nodes, Research report,
CEA/DAM ; Total E&P ; Université de Bordeaux,
October 2019.


	Introduction
	Low-rank formats
	High-performance H-matrix solver
	Challenges and research directions
	References

